Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks (2311.00259v2)

Published 1 Nov 2023 in cs.LG, cs.CV, cs.NA, and math.NA

Abstract: In recent years, there has been a growing interest in leveraging deep learning and neural networks to address scientific problems, particularly in solving partial differential equations (PDEs). However, many neural network-based methods like PINNs rely on auto differentiation and sampling collocation points, leading to a lack of interpretability and lower accuracy than traditional numerical methods. As a result, we propose a fully unsupervised approach, requiring no training data, to estimate finite difference solutions for PDEs directly via small linear convolutional neural networks. Our proposed approach uses substantially fewer parameters than similar finite difference-based approaches while also demonstrating comparable accuracy to the true solution for several selected elliptic and parabolic problems compared to the finite difference method.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com