Spherical functions on symmetric spaces of Friedberg-Jacquet type (2311.00148v1)
Abstract: We give explicit models for spherical functions on $p$-adic symmetric spaces $X=H\backslash G$ for pairs of $p$-adic groups $(G,H)$ of the form $(\mathrm{U}(2r),\mathrm{U}(r)\times \mathrm{U}(r)),$ $(\mathrm{O}(2r),\mathrm{O}(r)\times \mathrm{O}(r)),$ $(\mathrm{Sp}(4r),\mathrm{Sp}(2r)\times\mathrm{Sp}(2r))),$ $(\mathrm{U}(2r+1),\mathrm{U}(r+1)\times \mathrm{U}(r)),$ and $ (\mathrm{O}(2r+1),\mathrm{O}(r+1)\times \mathrm{O}(r)).$ As an application, we completely describe their Hecke module structure.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.