Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-free online learning of subgrid-scale dynamics with neural emulators (2310.19385v4)

Published 30 Oct 2023 in physics.comp-ph, cs.LG, and physics.flu-dyn

Abstract: In this paper, we propose a generic algorithm to train machine learning-based subgrid parametrizations online, i.e., with a posteriori loss functions, but for non-differentiable numerical solvers. The proposed approach leverages a neural emulator to approximate the reduced state-space solver, which is then used to allow gradient propagation through temporal integration steps. We apply this methodology on a single layer quasi-geostrophic system with topography, known to be highly unstable in around 500 temporal iterations with offline strategies. Using our algorithm, we are able to train a parametrization that recovers most of the benefits of online strategies without having to compute the gradient of the original solver. It is demonstrated that training the neural emulator and parametrization components separately with different loss quantities is necessary in order to minimize the propagation of approximation biases. Experiments on emulator architectures with different complexities also indicates that emulator performance is key in order to learn an accurate parametrization. This work is a step towards learning parametrization with online strategies for weather models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. R. S. Rogallo and P. Moin, Numerical simulation of turbulent flows, Annual Review of Fluid Mechanics 16, 99 (1984).
  2. C. Meneveau and J. Katz, Scale-invariance and turbulence models for large-eddy simulation, Annual Review of Fluid Mechanics 32, 1 (2000).
  3. S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Machine learning for fluid mechanics, Annual Review of Fluid Mechanics 52, 477 (2020).
  4. R. Vinuesa and S. L. Brunton, Enhancing computational fluid dynamics with machine learning, Nature Computational Science 2, 358 (2022).
  5. S. Rasp, M. S. Pritchard, and P. Gentine, Deep learning to represent subgrid processes in climate models, Proceedings of the National Academy of Sciences 115, 9684 (2018).
  6. J. Yuval and P. A. O’Gorman, Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions, Nature communications 11, 3295 (2020).
  7. T. Bolton and L. Zanna, Applications of deep learning to ocean data inference and subgrid parameterization, Journal of Advances in Modeling Earth Systems 11, 376 (2019).
  8. A. P. Guillaumin and L. Zanna, Stochastic-deep learning parameterization of ocean momentum forcing, Journal of Advances in Modeling Earth Systems 13, e2021MS002534 (2021).
  9. H. A. Pahlavan, P. Hassanzadeh, and M. J. Alexander, Explainable offline-online training of neural networks for parameterizations: A 1d gravity wave-qbo testbed in the small-data regime, arXiv preprint 10.48550/arXiv.2309.09024 (2023).
  10. J. Sirignano and J. F. MacArt, Dynamic deep learning les closures: Online optimization with embedded dns, arXiv preprint 10.48550/arXiv:2303.02338 (2023).
  11. J. Sirignano, J. F. MacArt, and J. B. Freund, DPM: A deep learning pde augmentation method with application to large-eddy simulation, Journal of Computational Physics 423, 109811 (2020).
  12. K. Duraisamy, Perspectives on machine learning-augmented reynolds-averaged and large eddy simulation models of turbulence, Physical Review Fluids 6, 050504 (2021).
  13. J. F. MacArt, J. Sirignano, and J. B. Freund, Embedded training of neural-network subgrid-scale turbulence models, Physical Review Fluids 6, 050502 (2021).
  14. B. List, L.-W. Chen, and N. Thuerey, Learned turbulence modelling with differentiable fluid solvers: physics-based loss functions and optimisation horizons, Journal of Fluid Mechanics 949, A25 (2022).
  15. X. Fan and J.-X. Wang, Differentiable hybrid neural modeling for fluid-structure interaction, arXiv preprint 10.48550/arXiv.2303.12971 (2023).
  16. P. Holl, V. Koltun, and N. Thuerey, Learning to control pdes with differentiable physics, arXiv preprint 10.48550/arXiv.2001.07457 (2020).
  17. G. Négiar, M. W. Mahoney, and A. S. Krishnapriyan, Learning differentiable solvers for systems with hard constraints, arXiv preprint 10.48550/arXiv.2207.08675 (2022).
  18. S. Pawar and O. San, Data assimilation empowered neural network parametrizations for subgrid processes in geophysical flows, Physical Review Fluids 6, 050501 (2021).
  19. M. A. Iglesias, K. J. Law, and A. M. Stuart, Ensemble kalman methods for inverse problems, Inverse Problems 29, 045001 (2013).
  20. N. B. Kovachki and A. M. Stuart, Ensemble kalman inversion: a derivative-free technique for machine learning tasks, Inverse Problems 35, 095005 (2019).
  21. M. Kurz, P. Offenhäuser, and A. Beck, Deep reinforcement learning for turbulence modeling in large eddy simulations, International Journal of Heat and Fluid Flow 99, 109094 (2023).
  22. G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos, Automating turbulence modelling by multi-agent reinforcement learning, Nature Machine Intelligence 3, 87 (2021).
  23. H. J. Bae and P. Koumoutsakos, Scientific multi-agent reinforcement learning for wall-models of turbulent flows, Nature Communications 13, 1443 (2022).
  24. K. Cranmer, J. Brehmer, and G. Louppe, The frontier of simulation-based inference, Proceedings of the National Academy of Sciences 117, 30055 (2020).
  25. M. Bocquet, Surrogate modeling for the climate sciences dynamics with machine learning and data assimilation, Frontiers in Applied Mathematics and Statistics 9, 1133226 (2023).
  26. S. Hochreiter, The vanishing gradient problem during learning recurrent neural nets and problem solutions, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6, 107 (1998).
  27. P. Sagaut, Large eddy simulation for incompressible flows: an introduction (Springer Science & Business Media, 2005).
  28. M. Lesieur and O. Metais, New trends in large-eddy simulations of turbulence, Annual Review of Fluid Mechanics 28, 45 (1996).
  29. U. Schumann, Stochastic backscatter of turbulence energy and scalar variance by random subgrid-scale fluxes, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 451, 293 (1995).
  30. J. P. Graham and T. Ringler, A framework for the evaluation of turbulence closures used in mesoscale ocean large-eddy simulations, Ocean Modelling 65, 25 (2013).
  31. J. S. Frederiksen, T. J. O’Kane, and M. J. Zidikheri, Stochastic subgrid parameterizations for atmospheric and oceanic flows, Physica Scripta 85, 068202 (2012).
  32. A. Leonard, Energy cascade in large-eddy simulations of turbulent fluid flows, in Advances in Geophysics, Vol. 18 (Elsevier, 1975) pp. 237–248.
  33. B. Fox-Kemper and D. Menemenlis, Can large eddy simulation techniques improve mesoscale rich ocean models?, Washington DC American Geophysical Union Geophysical Monograph Series 177, 319 (2008).
  34. A. F. Thompson, Jet formation and evolution in baroclinic turbulence with simple topography, Journal of Physical Oceanography 40, 257 (2010).
  35. J. Smagorinsky, General circulation experiments with the primitive equations: I. the basic experiment, Monthly Weather Review 91, 99 (1963).
  36. D. K. Lilly, A proposed modification of the germano subgrid-scale closure method, Physics of Fluids A: Fluid Dynamics 4, 633 (1992).
  37. F. Bouchet and A. Venaille, Statistical mechanics of two-dimensional and geophysical flows, Physics Reports 515, 227 (2012).
  38. A. Kravchenko and P. Moin, On the effect of numerical errors in large eddy simulations of turbulent flows, Journal of Computational Physics 131, 310 (1997).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com