Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers (2207.11417v1)
Abstract: Numerical simulations in climate, chemistry, or astrophysics are computationally too expensive for uncertainty quantification or parameter-exploration at high-resolution. Reduced-order or surrogate models are multiple orders of magnitude faster, but traditional surrogates are inflexible or inaccurate and pure ML-based surrogates too data-hungry. We propose a hybrid, flexible surrogate model that exploits known physics for simulating large-scale dynamics and limits learning to the hard-to-model term, which is called parametrization or closure and captures the effect of fine- onto large-scale dynamics. Leveraging neural operators, we are the first to learn grid-independent, non-local, and flexible parametrizations. Our \textit{multiscale neural operator} is motivated by a rich literature in multiscale modeling, has quasilinear runtime complexity, is more accurate or flexible than state-of-the-art parametrizations and demonstrated on the chaotic equation multiscale Lorenz96.
- Björn Lütjens (20 papers)
- Catherine H. Crawford (2 papers)
- Christopher Hill (3 papers)
- Dava Newman (9 papers)
- Campbell D Watson (3 papers)