Adiabatic Axion-Photon Mixing Near Neutron Stars (2310.18403v2)
Abstract: One of the promising new proposals to search for axions in astrophysical environments is to look for narrow radio lines produced from the resonant conversion of axion dark matter falling through the magnetospheres of neutron stars. For sufficiently strong magnetic fields, axion masses in the $\mathcal{O}(10\mu{\rm eV)}$ range, and axion-photon couplings $g_{a\gamma} \gtrsim 10{-12} \, {\rm GeV{-1}}$, the conversion can become hyper-efficient, allowing axion-photon and photon-axion transitions to occur with $\mathcal{O}(1)$ probabilities. Despite the strong mixing between these particles, the observable radio flux emanating from the magnetosphere is expected to be heavily suppressed -- this is a consequence of the fact that photons sourced by infalling axions have a high probability of converting back into axions before escaping the magnetosphere. In this work, we study the evolution of the axion and photon phase space near the surface of highly magnetized neutron stars in the adiabatic regime, quantifying for the first time the properties of the radio flux that arise at high axion-photon couplings. We show that previous attempts to mimic the scaling in this regime have been overly conservative in their treatment, and that the suppression can be largely circumvented for radio observations targeting neutron star populations.
- R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791 (1977).
- J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).
- A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).
- M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983).
- L. F. Abbott and P. Sikivie, Phys. Lett. B 120, 133 (1983).
- V. B. . Klaer and G. D. Moore, JCAP 11, 049 (2017), arXiv:1708.07521 [hep-ph] .
- E. Witten, Phys. Lett. B 149, 351 (1984).
- J. P. Conlon, JHEP 05, 078 (2006), arXiv:hep-th/0602233 .
- P. Svrcek and E. Witten, JHEP 06, 051 (2006), arXiv:hep-th/0605206 .
- P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983), [Erratum: Phys.Rev.Lett. 52, 695 (1984)].
- S. J. Asztalos et al. (ADMX), Phys. Rev. Lett. 104, 041301 (2010), arXiv:0910.5914 [astro-ph.CO] .
- N. Du et al. (ADMX), Phys. Rev. Lett. 120, 151301 (2018), arXiv:1804.05750 [hep-ex] .
- T. Braine et al. (ADMX), Phys. Rev. Lett. 124, 101303 (2020), arXiv:1910.08638 [hep-ex] .
- C. Bartram et al. (ADMX), Phys. Rev. Lett. 127, 261803 (2021), arXiv:2110.06096 [hep-ex] .
- C. Boutan et al. (ADMX), Phys. Rev. Lett. 121, 261302 (2018), arXiv:1901.00920 [hep-ex] .
- C. Bartram et al. (ADMX), Rev. Sci. Instrum. 94, 044703 (2023), arXiv:2110.10262 [hep-ex] .
- J. Kim et al., Phys. Rev. Lett. 130, 091602 (2023), arXiv:2207.13597 [hep-ex] .
- L. Zhong et al. (HAYSTAC), Phys. Rev. D 97, 092001 (2018), arXiv:1803.03690 [hep-ex] .
- K. M. Backes et al. (HAYSTAC), Nature 590, 238 (2021), arXiv:2008.01853 [quant-ph] .
- D. Alesini et al., Phys. Rev. D 99, 101101 (2019), arXiv:1903.06547 [physics.ins-det] .
- D. Alesini et al., Phys. Rev. D 103, 102004 (2021), arXiv:2012.09498 [hep-ex] .
- A. A. Melcón et al. (CAST), JHEP 21, 075 (2020), arXiv:2104.13798 [hep-ex] .
- H. Chang et al. (TASEH), Phys. Rev. Lett. 129, 111802 (2022), arXiv:2205.05574 [hep-ex] .
- A. J. Millar et al. (ALPHA), Phys. Rev. D 107, 055013 (2023), arXiv:2210.00017 [hep-ph] .
- J. Liu et al. (BREAD), Phys. Rev. Lett. 128, 131801 (2022), arXiv:2111.12103 [physics.ins-det] .
- S. Beurthey et al., (2020), arXiv:2003.10894 [physics.ins-det] .
- L. Brouwer et al. (DMRadio), Phys. Rev. D 106, 103008 (2022), arXiv:2204.13781 [hep-ex] .
- J. I. McDonald, Phys. Rev. D 105, 083010 (2022), arXiv:2108.13894 [hep-ph] .
- K. K. Boddy et al., JHEAp 35, 112 (2022), arXiv:2203.06380 [hep-ph] .
- C. B. Adams et al., in Snowmass 2021 (2022) arXiv:2203.14923 [hep-ex] .
- M. Baryakhtar et al., in Snowmass 2021 (2022) arXiv:2203.07984 [hep-ph] .
- M. S. Pshirkov and S. B. Popov, J. Exp. Theor. Phys. 108, 384 (2009), arXiv:0711.1264 [astro-ph] .
- A. Prabhu and N. M. Rapidis, JCAP 10, 054 (2020), arXiv:2005.03700 [astro-ph.CO] .
- A. Prabhu, Phys. Rev. D 104, 055038 (2021), arXiv:2104.14569 [hep-ph] .
- A. Prabhu, Astrophys. J. Lett. 946, L52 (2023), arXiv:2302.11645 [astro-ph.HE] .
- J. Darling, Astrophys. J. Lett. 900, L28 (2020a), arXiv:2008.11188 [astro-ph.CO] .
- J. Darling, Phys. Rev. Lett. 125, 121103 (2020b), arXiv:2008.01877 [astro-ph.CO] .
- J. I. McDonald and S. J. Witte, (2023), arXiv:2309.08655 [hep-ph] .
- K. A. Hochmuth and G. Sigl, Phys. Rev. D 76, 123011 (2007), arXiv:0708.1144 [astro-ph] .
- L. D. Landau, Phys. Z. Sowjetunion 2 (1932), 10.1016/B978-0-08-010586-4.50014-6.
- C. Zener, Proc. Roy. Soc. Lond. A 137, 696 (1932).
- P. Carenza and M. C. D. Marsh, JCAP 04, 021 (2023), arXiv:2302.02700 [hep-ph] .
- K. Schwarzschild, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916, 424 (1916), arXiv:physics/9912033 .
- J. M. Lattimer, Universe 5, 159 (2019).
- P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).
- A. Spitkovsky and J. Arons, ASP Conf. Ser. 271, 81 (2002), arXiv:astro-ph/0201360 .
- J. Pétri, J. Plasma Phys. 82, 635820502 (2016), arXiv:1608.04895 [astro-ph.HE] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.