Existence of smooth stable manifolds for a class of parabolic SPDEs with fractional noise (2310.17981v1)
Abstract: Little seems to be known about the invariant manifolds for stochastic partial differential equations (SPDEs) driven by nonlinear multiplicative noise. Here we contribute to this aspect and analyze the Lu-Schmalfu{\ss} conjecture [Garrido-Atienza, et al., J. Differential Equations, 248(7):1637--1667, 2010] on the existence of stable manifolds for a class of parabolic SPDEs driven by nonlinear mutiplicative fractional noise. We emphasize that stable manifolds for SPDEs are infinite-dimensional objects, and the classical Lyapunov-Perron method cannot be applied, since the Lyapunov-Perron operator does not give any information about the backward orbit. However, by means of interpolation theory, we construct a suitable function space in which the discretized Lyapunov-Perron-type operator has a unique fixed point. Based on this we further prove the existence and smoothness of local stable manifolds for such SPDEs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.