Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Unifying Diffusion Models for Probabilistic Spatio-Temporal Graph Learning (2310.17360v2)

Published 26 Oct 2023 in cs.LG

Abstract: Spatio-temporal graph learning is a fundamental problem in modern urban systems. Existing approaches tackle different tasks independently, tailoring their models to unique task characteristics. These methods, however, fall short of modeling intrinsic uncertainties in the spatio-temporal data. Meanwhile, their specialized designs misalign with the current research efforts toward unifying spatio-temporal graph learning solutions. In this paper, we propose to model these tasks in a unified probabilistic perspective, viewing them as predictions based on conditional information with shared dependencies. Based on this proposal, we introduce Unified Spatio-Temporal Diffusion Models (USTD) to address the tasks uniformly under the uncertainty-aware diffusion framework. USTD is holistically designed, comprising a shared spatio-temporal encoder and attention-based denoising decoders that are task-specific. The encoder, optimized by pre-training strategies, effectively captures conditional spatio-temporal patterns. The decoders, utilizing attention mechanisms, generate predictions by leveraging learned patterns. Opting for forecasting and kriging, the decoders are designed as Spatial Gated Attention (SGA) and Temporal Gated Attention (TGA) for each task, with different emphases on the spatial and temporal dimensions. Combining the advantages of deterministic encoders and probabilistic decoders, USTD achieves state-of-the-art performances compared to both deterministic and probabilistic baselines, while also providing valuable uncertainty estimates.

Citations (6)

Summary

We haven't generated a summary for this paper yet.