Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

USTEP: Spatio-Temporal Predictive Learning under A Unified View (2310.05829v2)

Published 9 Oct 2023 in cs.CV

Abstract: Spatio-temporal predictive learning plays a crucial role in self-supervised learning, with wide-ranging applications across a diverse range of fields. Previous approaches for temporal modeling fall into two categories: recurrent-based and recurrent-free methods. The former, while meticulously processing frames one by one, neglect short-term spatio-temporal information redundancies, leading to inefficiencies. The latter naively stack frames sequentially, overlooking the inherent temporal dependencies. In this paper, we re-examine the two dominant temporal modeling approaches within the realm of spatio-temporal predictive learning, offering a unified perspective. Building upon this analysis, we introduce USTEP (Unified Spatio-TEmporal Predictive learning), an innovative framework that reconciles the recurrent-based and recurrent-free methods by integrating both micro-temporal and macro-temporal scales. Extensive experiments on a wide range of spatio-temporal predictive learning demonstrate that USTEP achieves significant improvements over existing temporal modeling approaches, thereby establishing it as a robust solution for a wide range of spatio-temporal applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.