Searches for axion-like particles via $γγ$ fusion at future $\mathrm{e}^+\mathrm{e}^-$ colliders (2310.17270v2)
Abstract: Opportunities for searches for axion-like particles (ALPs) coupling to photons in $\mathrm{e}+\mathrm{e}-$ collisions at the Future Circular Collider (FCC-ee) and International Linear Collider (ILC) are investigated. We perform a study of the photon-fusion production of ALPs decaying into two photons, $\mathrm{e}+\mathrm{e}- \overset{\gamma \gamma}{\longrightarrow} \mathrm{e}{+}\;a(\gamma \gamma)\;\mathrm{e}{-}$, over the light-by-light continuum background, for the planned FCC-ee and ILC center-of-mass energies and integrated luminosities. An analysis of the feasibility measurements is presented using parametrized simulations for two types of detectors. Upper limits at 95% confidence level (CL) on the cross section for ALP production, $\sigma(\gamma \gamma \to a \to \gamma \gamma)$, and on the ALP-photon coupling are obtained over the $m_a \approx 0.1$--1000 GeV ALP mass range, and compared to current and future collider searches. Production cross sections down to $\sigma(\gamma \gamma \to a \to \gamma \gamma) \approx 1$ fb (1 ab) will be probed at $m_a\approx 1$ (300) GeV, corresponding to constraints on the axion-photon coupling as low as $g_\mathrm{a\gamma \gamma} \approx 2\cdot10{-3}$ TeV${-1}$.
- ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1–29, arXiv:1207.7214 [hep-ex].
- CMS Collaboration, S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].
- S. D. Bass, A. De Roeck, and M. Kado, “The Higgs boson implications and prospects for future discoveries,” Nature Rev. Phys. 3 (2021) 608–624, arXiv:2104.06821 [hep-ph].
- T. Bose et al., “Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021,” arXiv:2209.13128 [hep-ph].
- G. F. Giudice, “Naturally Speaking: The Naturalness Criterion and Physics at the LHC,” arXiv:0801.2562 [hep-ph].
- P. Agrawal et al., “Feebly-interacting particles: FIPs 2020 workshop report,” Eur. Phys. J. C 81 (2021) 1015, arXiv:2102.12143 [hep-ph].
- M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B 120 (1983) 137–141.
- L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120 (1983) 133–136.
- J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B 120 (1983) 127–132.
- L. D. Duffy and K. van Bibber, “Axions as Dark Matter Particles,” New J. Phys. 11 (2009) 105008, arXiv:0904.3346 [hep-ph].
- R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
- P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, “Experimental Searches for the Axion and Axion-Like Particles,” Ann. Rev. Nucl. Part. Sci. 65 (2015) 485–514, arXiv:1602.00039 [hep-ex].
- A. Ringwald, “Searching for axions and ALPs from string theory,” J. Phys. Conf. Ser. 485 (2014) 012013, arXiv:1209.2299 [hep-ph].
- I. G. Irastorza, “An introduction to axions and their detection,” SciPost Phys. Lect. Notes 45 (2022) 1, arXiv:2109.07376 [hep-ph].
- K. Mimasu and V. Sanz, “ALPs at Colliders,” JHEP 06 (2015) 173, arXiv:1409.4792 [hep-ph].
- S. Knapen, T. Lin, H. K. Lou, and T. Melia, “Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions,” Phys. Rev. Lett. 118 (2017) 171801, arXiv:1607.06083 [hep-ph].
- I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey, and V. Sanz, “ALPs Effective Field Theory and Collider Signatures,” Eur. Phys. J. C 77 (2017) 572, arXiv:1701.05379 [hep-ph].
- M. Bauer, M. Neubert, and A. Thamm, “Collider Probes of Axion-Like Particles,” JHEP 12 (2017) 044, arXiv:1708.00443 [hep-ph].
- M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, and K. Schmidt-Hoberg, “Revised constraints and Belle II sensitivity for visible and invisible axion-like particles,” JHEP 12 (2017) 094, arXiv:1709.00009 [hep-ph]. [Erratum: JHEP 03, 190 (2021)].
- CMS Collaboration, A. M. Sirunyan et al., “Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV,” Phys. Lett. B 797 (2019) 134826, arXiv:1810.04602 [hep-ex].
- D. Aloni, C. Fanelli, Y. Soreq, and M. Williams, “Photoproduction of Axionlike Particles,” Phys. Rev. Lett. 123 (2019) 071801, arXiv:1903.03586 [hep-ph].
- Belle-II Collaboration, F. Abudinén et al., “Search for Axion-Like Particles produced in e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT collisions at Belle II,” Phys. Rev. Lett. 125 (2020) 161806, arXiv:2007.13071 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of Pb+Pb data with the ATLAS detector,” JHEP 03 (2021) 243, arXiv:2008.05355 [hep-ex]. [Erratum: JHEP 11, 050 (2021)].
- D. d’Enterria, “Collider constraints on axion-like particles,” in Workshop on Feebly Interacting Particles. 2, 2021. arXiv:2102.08971 [hep-ex].
- TOTEM, CMS Collaboration, A. Tumasyan et al., “First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” Phys. Rev. Lett. 129 (2022) 011801, arXiv:2110.05916 [hep-ex].
- CMS Collaboration, A. Tumasyan et al., “Search for high-mass exclusive diphoton production with tagged protons.” CMS-PAS-EXO-21-007, 2023.
- ATLAS Collaboration, G. Aad et al., “Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS,” JHEP 07 (2023) 234, arXiv:2304.10953 [hep-ex].
- S. Cerci et al., “FACET: A new long-lived particle detector in the very forward region of the CMS experiment,” JHEP 06 (2022) 110, arXiv:2201.00019 [hep-ex].
- D. Buarque Franzosi, G. Cacciapaglia, X. Cid Vidal, G. Ferretti, T. Flacke, and C. Vázquez Sierra, “Exploring new possibilities to discover a light pseudo-scalar at LHCb,” Eur. Phys. J. C 82 (2022) 3, arXiv:2106.12615 [hep-ph].
- BESIII Collaboration, M. Ablikim et al., “Search for an axion-like particle in radiative J/ψ𝜓\psiitalic_ψ decays,” Phys. Lett. B 838 (2023) 137698, arXiv:2211.12699 [hep-ex].
- L. A. Harland-Lang and M. Tasevsky, “New calculation of semiexclusive axionlike particle production at the LHC,” Phys. Rev. D 107 (2023) 033001, arXiv:2208.10526 [hep-ph].
- M. Bauer, M. Heiles, M. Neubert, and A. Thamm, “Axion-Like Particles at Future Colliders,” Eur. Phys. J. C 79 (2019) 74, arXiv:1808.10323 [hep-ph].
- C.-X. Yue, H.-Y. Zhang, and H. Wang, “Production of axion-like particles via vector boson fusion at future electron-positron colliders,” Eur. Phys. J. C 82 (2022) 88, arXiv:2112.11604 [hep-ph].
- N. Steinberg, “Discovering Axion-Like Particles with Photon Fusion at the ILC,” arXiv:2108.11927 [hep-ph].
- T. Han, T. Li, and X. Wang, “Axion-Like Particles at High Energy Muon Colliders – A White paper for Snowmass 2021,” in Snowmass 2021. 3, 2022. arXiv:2203.05484 [hep-ph].
- H. Wang, C.-X. Yue, Y.-C. Guo, X.-J. Cheng, and X.-Y. Li, “Prospects for searching for axion-like particles at the CEPC,” J. Phys. G 49 (2022) 115002.
- S. C. İnan and A. V. Kisselev, “Probe of axion-like particles in vector boson scattering at a muon collider,” J. Phys. G 50 (2023) 105002, arXiv:2207.03325 [hep-ph].
- M. Tian, Z. S. Wang, and K. Wang, “Search for long-lived axions with far detectors at future lepton colliders,” arXiv:2201.08960 [hep-ph].
- K. Cheung and C. J. Ouseph, “Axionlike particle search at Higgs factories,” Phys. Rev. D 108 (2023) 035003, arXiv:2303.16514 [hep-ph].
- K. Mosala, P. Sharma, M. Kumar, and A. Goyal, “Axion-Like Particles at future e−psuperscript𝑒𝑝e^{-}pitalic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_p collider,” arXiv:2307.00394 [hep-ph].
- R. Balkin, O. Hen, W. Li, H. Liu, T. Ma, Y. Soreq, and M. Williams, “Probing axion-like particles at the Electron-Ion Collider,” arXiv:2310.08827 [hep-ph].
- R. K. Ellis et al., “Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020,” arXiv:1910.11775 [hep-ex].
- M. Narain et al., “The Future of US Particle Physics – The Snowmass 2021 Energy Frontier Report,” arXiv:2211.11084 [hep-ex].
- FCC Collaboration, A. Abada et al., “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur. Phys. J. C 79 (2019) 474.
- FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 (2019) 261–623.
- “The International Linear Collider Technical Design Report - Volume 1: Executive Summary,” arXiv:1306.6327 [physics.acc-ph].
- A. J. Baltz, “The Physics of Ultraperipheral Collisions at the LHC,” Phys. Rept. 458 (2008) 1–171, arXiv:0706.3356 [nucl-ex].
- R. Bruce et al., “New physics searches with heavy-ion collisions at the CERN Large Hadron Collider,” J. Phys. G 47 (2020) 060501, arXiv:1812.07688 [hep-ph].
- V. P. Goncalves, D. E. Martins, and M. S. Rangel, “Searching for axionlike particles with low masses in pPb and PbPb collisions,” Eur. Phys. J. C 81 (2021) 522, arXiv:2103.01862 [hep-ph].
- D. d’Enterria et al., “Opportunities for new physics searches with heavy ions at colliders,” J. Phys. G 50 (2023) 050501, arXiv:2203.05939 [hep-ph].
- H.-S. Shao and D. d’Enterria, “gamma-UPC: automated generation of exclusive photon-photon processes in ultraperipheral proton and nuclear collisions with varying form factors,” JHEP 09 (2022) 248, arXiv:2207.03012 [hep-ph].
- D. d’Enterria and V. D. Le, “Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark.” arXiv:230i.iiii, 2023.
- D. d’Enterria and G. G. da Silveira, “Observing light-by-light scattering at the Large Hadron Collider,” Phys. Rev. Lett. 111 (2013) 080405, arXiv:1305.7142 [hep-ph]. [Erratum: Phys.Rev.Lett. 116, 129901 (2016)].
- ILD Collaboration, H. Abramowicz et al., “The ILD detector at the ILC,” arXiv:1912.04601 [physics.ins-det].
- RD-FA Collaboration, M. Antonello, “IDEA: A detector concept for future leptonic colliders,” Nuovo Cim. C 43 (2020) 27.
- L. A. Harland-Lang, M. Tasevsky, V. A. Khoze, and M. G. Ryskin, “A new approach to modelling elastic and inelastic photon-initiated production at the LHC: SuperChic 4,” Eur. Phys. J. C 80 (2020) 925, arXiv:2007.12704 [hep-ph].
- V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, “The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rept. 15 (1975) 181–281.
- DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” JHEP 02 (2014) 057, arXiv:1307.6346 [hep-ex].
- P. Rebello Teles and D. d’Enterria, “Axion-like particles via photon-photon fusion at fcc-ee.” "Presentation at the 28th International Workshop on Weak Interactions and Neutrinos, Minnesota, USA, June 2021", June, 2021.
- P. Rebello Teles, V. P. Gonçalves, and D. E. Martins, “Axion-like particles via photon-photon fusion at ilc.” "Presentation at the 1st Workshop of the Brazilian Center for Linear Collider studies (BCLC), Rio de Janeiro, Brazil, July 2021", July, 2021.
- S. J. Brodsky, T. Kinoshita, and H. Terazawa, “Two Photon Mechanism of Particle Production by High-Energy Colliding Beams,” Phys. Rev. D 4 (1971) 1532–1557.
- J. A. M. Vermaseren, “Two Photon Processes at Very High-Energies,” Nucl. Phys. B 229 (1983) 347–371.
- S. Uehara, “TREPS: A Monte-Carlo Event Generator for Two-photon Processes at e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Colliders using an Equivalent Photon Approximation,” arXiv:1310.0157 [hep-ph].
- G. A. Schuler, “Two photon physics with GALUGA 2.0,” Comput. Phys. Commun. 108 (1998) 279–303, arXiv:hep-ph/9710506.
- J. de Favereau de Jeneret, V. Lemaitre, Y. Liu, S. Ovyn, T. Pierzchala, K. Piotrzkowski, X. Rouby, N. Schul, and M. Vander Donckt, “High energy photon interactions at the LHC,” arXiv:0908.2020 [hep-ph].
- “High-Energy Photon Collisions at the LHC,” Nucl. Phys. B Proc. Suppl. 179 (2008) 1.
- L. A. Harland-Lang, V. A. Khoze, and M. G. Ryskin, “Exclusive physics at the LHC with SuperChic 2,” Eur. Phys. J. C 76 (2016) 9, arXiv:1508.02718 [hep-ph].
- G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, and Y. Kharlov, “Coherent gamma gamma and gamma-A interactions in very peripheral collisions at relativistic ion colliders,” Phys. Rept. 364 (2002) 359–450, arXiv:hep-ph/0112211.
- P. Rebello Teles and D. d’Enterria, “Prospects for γγ→H→𝛾𝛾𝐻\gamma\gamma\to Hitalic_γ italic_γ → italic_H and γγ→W+W−→𝛾𝛾superscript𝑊superscript𝑊\gamma\gamma\to W^{+}W^{-}italic_γ italic_γ → italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT measurements at the FCC-ee,” in International Conference on the Structure and Interactions of the Photon and 21st International Workshop on Photon-Photon Collisions and International Workshop on High Energy Photon Linear Colliders. 10, 2015. arXiv:arXiv [hep-ph]1510.08141 [hep-ph].
- CLIC Collaboration, M. Aicheler et al., “A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report,”.
- CEPC Study Group Collaboration, “CEPC Conceptual Design Report: Volume 1 - Accelerator,” arXiv:1809.00285 [physics.acc-ph].
- V. I. Telnov, “Principles of photon colliders,” Nucl. Instrum. Meth. A 355 (1995) 3–18.
- FCC-ee Collaboration, C. Grojean, P. Janot, M. Mangano, et al., “FCC-ee Midterm report: Physics and Experiments.” CERN-FCC-2023-000i, 2023.
- M. Przybycien, “Two-photon physics at LEP,” Nucl. Phys. B Proc. Suppl. 179-180 (2008) 54–61.
- D. Bardin, L. Kalinovskaya, and E. Uglov, “Standard Model light-by-light scattering in SANC: analytic and numeric evaluation,” Phys. Atom. Nucl. 73 (2010) 1878–1888, arXiv:0911.5634 [hep-ph].
- N. Bacchetta et al., “CLD – A Detector Concept for the FCC-ee,” arXiv:1911.12230 [physics.ins-det].
- FCC Noble Liquid Calorimetry group Collaboration, B. Francois, “Noble liquid calorimetry for a future FCC-ee experiment,” Nucl. Instrum. Meth. A 1040 (2022) 167035.
- G. Ganis, C. Helsens, and V. Völkl, “Key4hep, a framework for future HEP experiments and its use in FCC,” Eur. Phys. J. Plus 137 (2022) 149, arXiv:2111.09874 [hep-ex].
- N. Barchetta, P. Collins, and P. Riedler, “Tracking and vertex detectors at FCC-ee,” Eur. Phys. J. Plus 137 no. 2, (2022) 231, arXiv:2112.13019 [physics.ins-det].
- D. d’Enterria and H.-S. Shao, “Observing true tauonium via two-photon fusion at e+e−superscriptesuperscripte\mathrm{e}^{+}\mathrm{e}^{-}roman_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and hadron colliders,” Phys. Rev. D 105 (2022) 093008, arXiv:2202.02316 [hep-ph].
- G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an]. [Erratum: Eur.Phys.J.C 73, 2501 (2013)].
- L. Moneta, K. Belasco, K. S. Cranmer, S. Kreiss, A. Lazzaro, D. Piparo, G. Schott, W. Verkerke, and M. Wolf, “The RooStats Project,” PoS ACAT2010 (2010) 057, arXiv:1009.1003 [physics.data-an].
- C. Antel et al., “Feebly Interacting Particles: FIPs 2022 workshop report,” in Workshop on Feebly-Interacting Particles. 5, 2023. arXiv:2305.01715 [hep-ph].
- Belle-II Collaboration, T. Abe et al., “Belle II Technical Design Report,” arXiv:1011.0352 [physics.ins-det].
- D. d’Enterria and V. D. Le, “Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark,” arXiv:2312.11211 [hep-ph].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.