Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Searches for axion-like particles via $γγ$ fusion at future $\mathrm{e}^+\mathrm{e}^-$ colliders (2310.17270v2)

Published 26 Oct 2023 in hep-ex and hep-ph

Abstract: Opportunities for searches for axion-like particles (ALPs) coupling to photons in $\mathrm{e}+\mathrm{e}-$ collisions at the Future Circular Collider (FCC-ee) and International Linear Collider (ILC) are investigated. We perform a study of the photon-fusion production of ALPs decaying into two photons, $\mathrm{e}+\mathrm{e}- \overset{\gamma \gamma}{\longrightarrow} \mathrm{e}{+}\;a(\gamma \gamma)\;\mathrm{e}{-}$, over the light-by-light continuum background, for the planned FCC-ee and ILC center-of-mass energies and integrated luminosities. An analysis of the feasibility measurements is presented using parametrized simulations for two types of detectors. Upper limits at 95% confidence level (CL) on the cross section for ALP production, $\sigma(\gamma \gamma \to a \to \gamma \gamma)$, and on the ALP-photon coupling are obtained over the $m_a \approx 0.1$--1000 GeV ALP mass range, and compared to current and future collider searches. Production cross sections down to $\sigma(\gamma \gamma \to a \to \gamma \gamma) \approx 1$ fb (1 ab) will be probed at $m_a\approx 1$ (300) GeV, corresponding to constraints on the axion-photon coupling as low as $g_\mathrm{a\gamma \gamma} \approx 2\cdot10{-3}$ TeV${-1}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1–29, arXiv:1207.7214 [hep-ex].
  2. CMS Collaboration, S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].
  3. S. D. Bass, A. De Roeck, and M. Kado, “The Higgs boson implications and prospects for future discoveries,” Nature Rev. Phys. 3 (2021) 608–624, arXiv:2104.06821 [hep-ph].
  4. T. Bose et al., “Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021,” arXiv:2209.13128 [hep-ph].
  5. G. F. Giudice, “Naturally Speaking: The Naturalness Criterion and Physics at the LHC,” arXiv:0801.2562 [hep-ph].
  6. P. Agrawal et al., “Feebly-interacting particles: FIPs 2020 workshop report,” Eur. Phys. J. C 81 (2021) 1015, arXiv:2102.12143 [hep-ph].
  7. M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B 120 (1983) 137–141.
  8. L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120 (1983) 133–136.
  9. J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B 120 (1983) 127–132.
  10. L. D. Duffy and K. van Bibber, “Axions as Dark Matter Particles,” New J. Phys. 11 (2009) 105008, arXiv:0904.3346 [hep-ph].
  11. R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
  12. P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, “Experimental Searches for the Axion and Axion-Like Particles,” Ann. Rev. Nucl. Part. Sci. 65 (2015) 485–514, arXiv:1602.00039 [hep-ex].
  13. A. Ringwald, “Searching for axions and ALPs from string theory,” J. Phys. Conf. Ser. 485 (2014) 012013, arXiv:1209.2299 [hep-ph].
  14. I. G. Irastorza, “An introduction to axions and their detection,” SciPost Phys. Lect. Notes 45 (2022) 1, arXiv:2109.07376 [hep-ph].
  15. K. Mimasu and V. Sanz, “ALPs at Colliders,” JHEP 06 (2015) 173, arXiv:1409.4792 [hep-ph].
  16. S. Knapen, T. Lin, H. K. Lou, and T. Melia, “Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions,” Phys. Rev. Lett. 118 (2017) 171801, arXiv:1607.06083 [hep-ph].
  17. I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey, and V. Sanz, “ALPs Effective Field Theory and Collider Signatures,” Eur. Phys. J. C 77 (2017) 572, arXiv:1701.05379 [hep-ph].
  18. M. Bauer, M. Neubert, and A. Thamm, “Collider Probes of Axion-Like Particles,” JHEP 12 (2017) 044, arXiv:1708.00443 [hep-ph].
  19. M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, and K. Schmidt-Hoberg, “Revised constraints and Belle II sensitivity for visible and invisible axion-like particles,” JHEP 12 (2017) 094, arXiv:1709.00009 [hep-ph]. [Erratum: JHEP 03, 190 (2021)].
  20. CMS Collaboration, A. M. Sirunyan et al., “Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV,” Phys. Lett. B 797 (2019) 134826, arXiv:1810.04602 [hep-ex].
  21. D. Aloni, C. Fanelli, Y. Soreq, and M. Williams, “Photoproduction of Axionlike Particles,” Phys. Rev. Lett. 123 (2019) 071801, arXiv:1903.03586 [hep-ph].
  22. Belle-II Collaboration, F. Abudinén et al., “Search for Axion-Like Particles produced in e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT collisions at Belle II,” Phys. Rev. Lett. 125 (2020) 161806, arXiv:2007.13071 [hep-ex].
  23. ATLAS Collaboration, G. Aad et al., “Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of Pb+Pb data with the ATLAS detector,” JHEP 03 (2021) 243, arXiv:2008.05355 [hep-ex]. [Erratum: JHEP 11, 050 (2021)].
  24. D. d’Enterria, “Collider constraints on axion-like particles,” in Workshop on Feebly Interacting Particles. 2, 2021. arXiv:2102.08971 [hep-ex].
  25. TOTEM, CMS Collaboration, A. Tumasyan et al., “First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” Phys. Rev. Lett. 129 (2022) 011801, arXiv:2110.05916 [hep-ex].
  26. CMS Collaboration, A. Tumasyan et al., “Search for high-mass exclusive diphoton production with tagged protons.” CMS-PAS-EXO-21-007, 2023.
  27. ATLAS Collaboration, G. Aad et al., “Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS,” JHEP 07 (2023) 234, arXiv:2304.10953 [hep-ex].
  28. S. Cerci et al., “FACET: A new long-lived particle detector in the very forward region of the CMS experiment,” JHEP 06 (2022) 110, arXiv:2201.00019 [hep-ex].
  29. D. Buarque Franzosi, G. Cacciapaglia, X. Cid Vidal, G. Ferretti, T. Flacke, and C. Vázquez Sierra, “Exploring new possibilities to discover a light pseudo-scalar at LHCb,” Eur. Phys. J. C 82 (2022) 3, arXiv:2106.12615 [hep-ph].
  30. BESIII Collaboration, M. Ablikim et al., “Search for an axion-like particle in radiative J/ψ𝜓\psiitalic_ψ decays,” Phys. Lett. B 838 (2023) 137698, arXiv:2211.12699 [hep-ex].
  31. L. A. Harland-Lang and M. Tasevsky, “New calculation of semiexclusive axionlike particle production at the LHC,” Phys. Rev. D 107 (2023) 033001, arXiv:2208.10526 [hep-ph].
  32. M. Bauer, M. Heiles, M. Neubert, and A. Thamm, “Axion-Like Particles at Future Colliders,” Eur. Phys. J. C 79 (2019) 74, arXiv:1808.10323 [hep-ph].
  33. C.-X. Yue, H.-Y. Zhang, and H. Wang, “Production of axion-like particles via vector boson fusion at future electron-positron colliders,” Eur. Phys. J. C 82 (2022) 88, arXiv:2112.11604 [hep-ph].
  34. N. Steinberg, “Discovering Axion-Like Particles with Photon Fusion at the ILC,” arXiv:2108.11927 [hep-ph].
  35. T. Han, T. Li, and X. Wang, “Axion-Like Particles at High Energy Muon Colliders – A White paper for Snowmass 2021,” in Snowmass 2021. 3, 2022. arXiv:2203.05484 [hep-ph].
  36. H. Wang, C.-X. Yue, Y.-C. Guo, X.-J. Cheng, and X.-Y. Li, “Prospects for searching for axion-like particles at the CEPC,” J. Phys. G 49 (2022) 115002.
  37. S. C. İnan and A. V. Kisselev, “Probe of axion-like particles in vector boson scattering at a muon collider,” J. Phys. G 50 (2023) 105002, arXiv:2207.03325 [hep-ph].
  38. M. Tian, Z. S. Wang, and K. Wang, “Search for long-lived axions with far detectors at future lepton colliders,” arXiv:2201.08960 [hep-ph].
  39. K. Cheung and C. J. Ouseph, “Axionlike particle search at Higgs factories,” Phys. Rev. D 108 (2023) 035003, arXiv:2303.16514 [hep-ph].
  40. K. Mosala, P. Sharma, M. Kumar, and A. Goyal, “Axion-Like Particles at future e−⁢psuperscript𝑒𝑝e^{-}pitalic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_p collider,” arXiv:2307.00394 [hep-ph].
  41. R. Balkin, O. Hen, W. Li, H. Liu, T. Ma, Y. Soreq, and M. Williams, “Probing axion-like particles at the Electron-Ion Collider,” arXiv:2310.08827 [hep-ph].
  42. R. K. Ellis et al., “Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020,” arXiv:1910.11775 [hep-ex].
  43. M. Narain et al., “The Future of US Particle Physics – The Snowmass 2021 Energy Frontier Report,” arXiv:2211.11084 [hep-ex].
  44. FCC Collaboration, A. Abada et al., “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur. Phys. J. C 79 (2019) 474.
  45. FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 (2019) 261–623.
  46. “The International Linear Collider Technical Design Report - Volume 1: Executive Summary,” arXiv:1306.6327 [physics.acc-ph].
  47. A. J. Baltz, “The Physics of Ultraperipheral Collisions at the LHC,” Phys. Rept. 458 (2008) 1–171, arXiv:0706.3356 [nucl-ex].
  48. R. Bruce et al., “New physics searches with heavy-ion collisions at the CERN Large Hadron Collider,” J. Phys. G 47 (2020) 060501, arXiv:1812.07688 [hep-ph].
  49. V. P. Goncalves, D. E. Martins, and M. S. Rangel, “Searching for axionlike particles with low masses in pPb and PbPb collisions,” Eur. Phys. J. C 81 (2021) 522, arXiv:2103.01862 [hep-ph].
  50. D. d’Enterria et al., “Opportunities for new physics searches with heavy ions at colliders,” J. Phys. G 50 (2023) 050501, arXiv:2203.05939 [hep-ph].
  51. H.-S. Shao and D. d’Enterria, “gamma-UPC: automated generation of exclusive photon-photon processes in ultraperipheral proton and nuclear collisions with varying form factors,” JHEP 09 (2022) 248, arXiv:2207.03012 [hep-ph].
  52. D. d’Enterria and V. D. Le, “Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark.” arXiv:230i.iiii, 2023.
  53. D. d’Enterria and G. G. da Silveira, “Observing light-by-light scattering at the Large Hadron Collider,” Phys. Rev. Lett. 111 (2013) 080405, arXiv:1305.7142 [hep-ph]. [Erratum: Phys.Rev.Lett. 116, 129901 (2016)].
  54. ILD Collaboration, H. Abramowicz et al., “The ILD detector at the ILC,” arXiv:1912.04601 [physics.ins-det].
  55. RD-FA Collaboration, M. Antonello, “IDEA: A detector concept for future leptonic colliders,” Nuovo Cim. C 43 (2020) 27.
  56. L. A. Harland-Lang, M. Tasevsky, V. A. Khoze, and M. G. Ryskin, “A new approach to modelling elastic and inelastic photon-initiated production at the LHC: SuperChic 4,” Eur. Phys. J. C 80 (2020) 925, arXiv:2007.12704 [hep-ph].
  57. V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, “The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rept. 15 (1975) 181–281.
  58. DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” JHEP 02 (2014) 057, arXiv:1307.6346 [hep-ex].
  59. P. Rebello Teles and D. d’Enterria, “Axion-like particles via photon-photon fusion at fcc-ee.” "Presentation at the 28th International Workshop on Weak Interactions and Neutrinos, Minnesota, USA, June 2021", June, 2021.
  60. P. Rebello Teles, V. P. Gonçalves, and D. E. Martins, “Axion-like particles via photon-photon fusion at ilc.” "Presentation at the 1st Workshop of the Brazilian Center for Linear Collider studies (BCLC), Rio de Janeiro, Brazil, July 2021", July, 2021.
  61. S. J. Brodsky, T. Kinoshita, and H. Terazawa, “Two Photon Mechanism of Particle Production by High-Energy Colliding Beams,” Phys. Rev. D 4 (1971) 1532–1557.
  62. J. A. M. Vermaseren, “Two Photon Processes at Very High-Energies,” Nucl. Phys. B 229 (1983) 347–371.
  63. S. Uehara, “TREPS: A Monte-Carlo Event Generator for Two-photon Processes at e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Colliders using an Equivalent Photon Approximation,” arXiv:1310.0157 [hep-ph].
  64. G. A. Schuler, “Two photon physics with GALUGA 2.0,” Comput. Phys. Commun. 108 (1998) 279–303, arXiv:hep-ph/9710506.
  65. J. de Favereau de Jeneret, V. Lemaitre, Y. Liu, S. Ovyn, T. Pierzchala, K. Piotrzkowski, X. Rouby, N. Schul, and M. Vander Donckt, “High energy photon interactions at the LHC,” arXiv:0908.2020 [hep-ph].
  66. “High-Energy Photon Collisions at the LHC,” Nucl. Phys. B Proc. Suppl. 179 (2008) 1.
  67. L. A. Harland-Lang, V. A. Khoze, and M. G. Ryskin, “Exclusive physics at the LHC with SuperChic 2,” Eur. Phys. J. C 76 (2016) 9, arXiv:1508.02718 [hep-ph].
  68. G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, and Y. Kharlov, “Coherent gamma gamma and gamma-A interactions in very peripheral collisions at relativistic ion colliders,” Phys. Rept. 364 (2002) 359–450, arXiv:hep-ph/0112211.
  69. P. Rebello Teles and D. d’Enterria, “Prospects for γ⁢γ→H→𝛾𝛾𝐻\gamma\gamma\to Hitalic_γ italic_γ → italic_H and γ⁢γ→W+⁢W−→𝛾𝛾superscript𝑊superscript𝑊\gamma\gamma\to W^{+}W^{-}italic_γ italic_γ → italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT measurements at the FCC-ee,” in International Conference on the Structure and Interactions of the Photon and 21st International Workshop on Photon-Photon Collisions and International Workshop on High Energy Photon Linear Colliders. 10, 2015. arXiv:arXiv [hep-ph]1510.08141 [hep-ph].
  70. CLIC Collaboration, M. Aicheler et al., “A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report,”.
  71. CEPC Study Group Collaboration, “CEPC Conceptual Design Report: Volume 1 - Accelerator,” arXiv:1809.00285 [physics.acc-ph].
  72. V. I. Telnov, “Principles of photon colliders,” Nucl. Instrum. Meth. A 355 (1995) 3–18.
  73. FCC-ee Collaboration, C. Grojean, P. Janot, M. Mangano, et al., “FCC-ee Midterm report: Physics and Experiments.” CERN-FCC-2023-000i, 2023.
  74. M. Przybycien, “Two-photon physics at LEP,” Nucl. Phys. B Proc. Suppl. 179-180 (2008) 54–61.
  75. D. Bardin, L. Kalinovskaya, and E. Uglov, “Standard Model light-by-light scattering in SANC: analytic and numeric evaluation,” Phys. Atom. Nucl. 73 (2010) 1878–1888, arXiv:0911.5634 [hep-ph].
  76. N. Bacchetta et al., “CLD – A Detector Concept for the FCC-ee,” arXiv:1911.12230 [physics.ins-det].
  77. FCC Noble Liquid Calorimetry group Collaboration, B. Francois, “Noble liquid calorimetry for a future FCC-ee experiment,” Nucl. Instrum. Meth. A 1040 (2022) 167035.
  78. G. Ganis, C. Helsens, and V. Völkl, “Key4hep, a framework for future HEP experiments and its use in FCC,” Eur. Phys. J. Plus 137 (2022) 149, arXiv:2111.09874 [hep-ex].
  79. N. Barchetta, P. Collins, and P. Riedler, “Tracking and vertex detectors at FCC-ee,” Eur. Phys. J. Plus 137 no. 2, (2022) 231, arXiv:2112.13019 [physics.ins-det].
  80. D. d’Enterria and H.-S. Shao, “Observing true tauonium via two-photon fusion at e+⁢e−superscriptesuperscripte\mathrm{e}^{+}\mathrm{e}^{-}roman_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and hadron colliders,” Phys. Rev. D 105 (2022) 093008, arXiv:2202.02316 [hep-ph].
  81. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an]. [Erratum: Eur.Phys.J.C 73, 2501 (2013)].
  82. L. Moneta, K. Belasco, K. S. Cranmer, S. Kreiss, A. Lazzaro, D. Piparo, G. Schott, W. Verkerke, and M. Wolf, “The RooStats Project,” PoS ACAT2010 (2010) 057, arXiv:1009.1003 [physics.data-an].
  83. C. Antel et al., “Feebly Interacting Particles: FIPs 2022 workshop report,” in Workshop on Feebly-Interacting Particles. 5, 2023. arXiv:2305.01715 [hep-ph].
  84. Belle-II Collaboration, T. Abe et al., “Belle II Technical Design Report,” arXiv:1011.0352 [physics.ins-det].
  85. D. d’Enterria and V. D. Le, “Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark,” arXiv:2312.11211 [hep-ph].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com