Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unpaired MRI Super Resolution with Contrastive Learning (2310.15767v3)

Published 24 Oct 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Magnetic resonance imaging (MRI) is crucial for enhancing diagnostic accuracy in clinical settings. However, the inherent long scan time of MRI restricts its widespread applicability. Deep learning-based image super-resolution (SR) methods exhibit promise in improving MRI resolution without additional cost. Due to lacking of aligned high-resolution (HR) and low-resolution (LR) MRI image pairs, unsupervised approaches are widely adopted for SR reconstruction with unpaired MRI images. However, these methods still require a substantial number of HR MRI images for training, which can be difficult to acquire. To this end, we propose an unpaired MRI SR approach that employs contrastive learning to enhance SR performance with limited HR training data. Empirical results presented in this study underscore significant enhancements in the peak signal-to-noise ratio and structural similarity index, even when a paucity of HR images is available. These findings accentuate the potential of our approach in addressing the challenge of limited HR training data, thereby contributing to the advancement of MRI in clinical applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Hao Li (803 papers)
  2. Quanwei Liu (3 papers)
  3. Jianan Liu (30 papers)
  4. Xiling Liu (2 papers)
  5. Yanni Dong (9 papers)
  6. Tao Huang (203 papers)
  7. Zhihan Lv (29 papers)