Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self Super-Resolution for Magnetic Resonance Images using Deep Networks (1802.09431v1)

Published 26 Feb 2018 in eess.IV and cs.CV

Abstract: High resolution magnetic resonance~(MR) imaging~(MRI) is desirable in many clinical applications, however, there is a trade-off between resolution, speed of acquisition, and noise. It is common for MR images to have worse through-plane resolution~(slice thickness) than in-plane resolution. In these MRI images, high frequency information in the through-plane direction is not acquired, and cannot be resolved through interpolation. To address this issue, super-resolution methods have been developed to enhance spatial resolution. As an ill-posed problem, state-of-the-art super-resolution methods rely on the presence of external/training atlases to learn the transform from low resolution~(LR) images to high resolution~(HR) images. For several reasons, such HR atlas images are often not available for MRI sequences. This paper presents a self super-resolution~(SSR) algorithm, which does not use any external atlas images, yet can still resolve HR images only reliant on the acquired LR image. We use a blurred version of the input image to create training data for a state-of-the-art super-resolution deep network. The trained network is applied to the original input image to estimate the HR image. Our SSR result shows a significant improvement on through-plane resolution compared to competing SSR methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Can Zhao (35 papers)
  2. Aaron Carass (48 papers)
  3. Blake E. Dewey (18 papers)
  4. Jerry L. Prince (58 papers)
Citations (54)

Summary

We haven't generated a summary for this paper yet.