Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Electromagnetic Information Theory-Based Statistical Channel Model for Improved Channel Estimation (2310.12446v3)

Published 19 Oct 2023 in cs.IT, eess.SP, and math.IT

Abstract: Electromagnetic information theory (EIT) is an emerging interdisciplinary subject that integrates classical Maxwell electromagnetics and Shannon information theory. The goal of EIT is to uncover the information transmission mechanisms from an electromagnetic (EM) perspective in wireless systems. Existing works on EIT are mainly focused on the analysis of EM channel characteristics, degrees-of-freedom, and system capacity. However, these works do not clarify how to integrate EIT knowledge into the design and optimization of wireless systems. To fill in this gap, in this paper, we propose an EIT-based statistical channel model with simplified parameterization. Thanks to the simplified closed-form expression of the EMCF, it can be readily applied to various channel modeling and inference tasks. Specifically, by averaging the solutions of Maxwell's equations over a tunable von Mises distribution, we obtain a spatio-temporal correlation function (STCF) model of the EM channel, which we name as the EMCF. Furthermore, by tuning the parameters of the EMCF, we propose an EIT-based covariance estimator (EIT-Cov) to accurately capture the channel covariance. Since classical MMSE estimators can exploit prior information contained in the channel covariance matrix, we further propose the EIT-MMSE channel estimator by substituting EMCF for the covariance matrix. Simulation results show that both the proposed EIT-Cov covariance estimator and the EIT-MMSE channel estimator outperform their baseline algorithms, thus proving that EIT is beneficial to wireless communication systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. J. Zhu, X. Su, Z. Wan, L. Dai, and T. J. Cui, “The benefits of electromagnetic information theory for channel estimation,” in Proc. 2024 IEEE Int. Conf. Commun., 2024.
  2. M. H. Alsharif, A. H. Kelechi, M. A. Albreem, S. A. Chaudhry, M. S. Zia, and S. Kim, “Sixth generation (6G) wireless networks: Vision, research activities, challenges and potential solutions,” Symmetry, vol. 12, no. 4, p. 676, Apr. 2020.
  3. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, Aug. 2019.
  4. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Jan. 2017.
  5. M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Comm. Mag., vol. 61, no. 1, pp. 40–46, Jan. 2022.
  6. M. Chafii, L. Bariah, S. Muhaidat, and M. Debbah, “Twelve scientific challenges for 6G: Rethinking the foundations of communications theory,” IEEE Comm. Surveys Tut., Feb. 2023.
  7. J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, “Electromagnetic information theory: Fundamentals, modeling, applications, and open problems,” arXiv preprint arXiv:2212.02882, Sep. 2022.
  8. M. D. Migliore, “Horse (electromagnetics) is more important than horseman (information) for wireless transmission,” IEEE Trans. Antenna Propagat., vol. 67, no. 4, pp. 2046–2055, Dec. 2018.
  9. S. Loyka, “On the relationship of information theory and electromagnetism,” in Proc. IEEE 6th Int. Symp. Electr. Compat. Electr. Ecology.   IEEE, Jun. 2005, pp. 100–104.
  10. M. D. Migliore, “Who cares about the horse? A gentle introduction to information in electromagnetic theory,” IEEE Antenna Propagat. Mag., vol. 62, no. 5, pp. 126–137, Oct. 2020.
  11. R. Li, D. Li, J. Ma, Z. Feng, L. Zhang, S. Tan, E. Wei, H. Chen, and E.-P. Li, “An electromagnetic information theory based model for efficient characterization of MIMO systems in complex space,” IEEE Trans. Antenna Propagat., vol. 71, no. 4, pp. 3497–3508, Jan. 2023.
  12. A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary model for holographic MIMO small-scale fading,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1964–1979, Sep. 2020.
  13. A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Sep. 2022.
  14. T. Wang, W. Han, Z. Zhong, J. Pang, G. Zhou, S. Wang, and Q. Li, “Electromagnetic-compliant channel modeling and performance evaluation for holographic MIMO,” in Proc. IEEE Globecom Workshops.   IEEE, Dec. 2022, pp. 747–752.
  15. M. R. Castellanos and R. W. Heath Jr, “Electromagnetic manifold characterization of antenna arrays,” arXiv preprint arXiv:2311.04835, Nov. 2023.
  16. A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Spatial characterization of electromagnetic random channels,” IEEE Open J. Comm. Soc., vol. 3, pp. 847–866, Apr. 2022.
  17. O. Bucci and G. Franceschetti, “On the spatial bandwidth of scattered fields,” IEEE Trans. Antenna Propagat., vol. 35, no. 12, pp. 1445–1455, Dec. 1987.
  18. O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antenna Propagat., vol. 37, no. 7, pp. 918–926, Jul. 1989.
  19. D. A. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Applied Optics, vol. 39, no. 11, pp. 1681–1699, Nov. 2000.
  20. F. K. Gruber and E. A. Marengo, “New aspects of electromagnetic information theory for wireless and antenna systems,” IEEE Trans. Antenna Propagat., vol. 56, no. 11, pp. 3470–3484, Nov. 2008.
  21. M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space electromagnetic channel,” IEEE Trans. Antenna Propagat., vol. 56, no. 2, pp. 524–531, Feb. 2008.
  22. A. F. Molisch, H. Asplund, R. Heddergott, M. Steinbauer, and T. Zwick, “The COST259 directional channel model-part I: Overview and methodology,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3421–3433, Dec. 2006.
  23. S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “Quadriga: A 3-D multi-cell channel model with time evolution for enabling virtual field trials,” IEEE Trans. Antenna Propagat., vol. 62, no. 6, pp. 3242–3256, Mar. 2014.
  24. J.-P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas Commun., vol. 20, no. 6, pp. 1211–1226, Aug. 2002.
  25. A. A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp. 128–137, Feb. 1987.
  26. T. Van Erven and P. Harremos, “Rényi divergence and Kullback-Leibler divergence,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 3797–3820, Jun. 2014.
  27. A. Lapidoth and S. Shamai, “Fading channels: how perfect need “perfect side information” be?” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1118–1134, May 2002.
  28. T. Hesketh, R. C. de Lamare, and S. Wales, “Adaptive MMSE channel estimation algorithms for MIMO systems,” in Proc. 18th Euro. Wirel. Conf.   VDE, Apr. 2012, pp. 1–5.
  29. S. L. Loyka, “Channel capacity of MIMO architecture using the exponential correlation matrix,” IEEE Comm. Lett., vol. 5, no. 9, pp. 369–371, Sep. 2001.
  30. Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C.-B. Chae, “Mutual information for electromagnetic information theory based on random fields,” IEEE Trans. Commun., vol. 71, no. 4, pp. 1982–1996, Apr. 2023.
  31. K. V. Mardia and S. El-Atoum, “Bayesian inference for the von Mises-Fisher distribution,” Biometrika, vol. 63, no. 1, pp. 203–206, Apr. 1976.
  32. L. Liu, H. Feng, T. Yang, and B. Hu, “MIMO-OFDM wireless channel prediction by exploiting spatial-temporal correlation,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 310–319, Dec. 2013.
  33. W. C. Jakes, “Mobile microwave communication,” 1974.
  34. G. J. Byers and F. Takawira, “Spatially and temporally correlated MIMO channels: Modeling and capacity analysis,” IEEE Trans. Veh. Technol., vol. 53, no. 3, pp. 634–643, May 2004.
  35. A. Abdi and M. Kaveh, “A versatile spatio-temporal correlation function for mobile fading channels with non-isotropic scattering,” in Proc. 10th IEEE Workshop Stat. Signal Array Process.   IEEE, Aug. 2000, pp. 58–62.
  36. M. Wytock and Z. Kolter, “Sparse Gaussian conditional random fields: Algorithms, theory, and application to energy forecasting,” in Proc. Int. Conf. Machine Learning.   PMLR, Mar. 2013, pp. 1265–1273.
  37. T. T. Do, L. Gan, N. Nguyen, and T. D. Tran, “Sparsity adaptive matching pursuit algorithm for practical compressed sensing,” in Proc. 42nd Asilomar Conf. Sig. Systems Comput.   IEEE, Oct. 2008, pp. 581–587.
  38. D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for compressed sensing: I. motivation and construction,” in Proc. IEEE Inf. Theory Workshop (ITW’10).   IEEE, Jul. 2010, pp. 1–5.
  39. A. Meijerink and A. F. Molisch, “On the physical interpretation of the Saleh–Valenzuela model and the definition of its power delay profiles,” IEEE Trans. Antenna Propagat., vol. 62, no. 9, pp. 4780–4793, Jul. 2014.
  40. J. L. Bauck, “A note on Fourier transform conventions used in wave analyses,” EngrXiv. org, Jul. 2018.
  41. Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and channel estimation for holographic massive MIMO with planar arrays,” IEEE Wirel. Commun. Lett., vol. 11, no. 5, pp. 997–1001, May 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com