Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Electromagnetic Information Theory for Holographic MIMO Communications (2405.10496v4)

Published 17 May 2024 in cs.IT, eess.SP, and math.IT

Abstract: Holographic multiple-input multiple-output (HMIMO) utilizes a compact antenna array to form a nearly continuous aperture, thereby enhancing higher capacity and more flexible configurations compared with conventional MIMO systems, making it attractive in current scientific research. Key questions naturally arise regarding the potential of HMIMO to surpass Shannon's theoretical limits and how far its capabilities can be extended. However, the traditional Shannon information theory falls short in addressing these inquiries because it only focuses on the information itself while neglecting the underlying carrier, electromagnetic (EM) waves, and environmental interactions. To fill up the gap between the theoretical analysis and the practical application for HMIMO systems, we introduce electromagnetic information theory (EIT) in this paper. This paper begins by laying the foundation for HMIMO-oriented EIT, encompassing EM wave equations and communication regions. In the context of HMIMO systems, the resultant physical limitations are presented, involving Chu's limit, Harrington's limit, Hannan's limit, and the evaluation of coupling effects. Field sampling and HMIMO-assisted oversampling are also discussed to guide the optimal HMIMO design within the EIT framework. To comprehensively depict the EM-compliant propagation process, we present the approximate and exact channel modeling approaches in near-/far-field zones. Furthermore, we discuss both traditional Shannon's information theory, employing the probabilistic method, and Kolmogorov information theory, utilizing the functional analysis, for HMIMO-oriented EIT systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (116)
  1. C. Volmer, J. Weber, R. Stephan, K. Blau, and M. A. Hein, “An eigen-analysis of compact antenna arrays and its application to port decoupling,” IEEE Trans. Antennas Propag., vol. 56, no. 2, pp. 360–370, Feb. 2008.
  2. D. W. Browne, M. Manteghi, M. P. Fitz, and Y. Rahmat-Samii, “Experiments with compact antenna arrays for MIMO radio communications,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3239–3250, Nov. 2006.
  3. D. Sipal, M. P. Abegaonkar, and S. K. Koul, “Easily extendable compact planar UWB MIMO antenna array,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2328–2331, 2017.
  4. D. K. Papantonis and J. L. Volakis, “Dual-polarized tightly coupled array with substrate loading,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 325–328, 2016.
  5. A. O. Bah, P.-Y. Qin, R. W. Ziolkowski, Y. J. Guo, and T. S. Bird, “A wideband low-profile tightly coupled antenna array with a very high figure of merit,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2332–2343, Apr. 2019.
  6. C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wirel. Commun., vol. 27, no. 5, pp. 118–125, Oct. 2020.
  7. H. Zhang, H. Zhang, B. Di, and L. Song, “Holographic integrated sensing and communications: Principles, technology, and implementation,” IEEE Commun. Mag., vol. 61, no. 5, pp. 83–89, May 2023.
  8. T. Gong, P. Gavriilidis, R. Ji, C. Huang, G. C. Alexandropoulos, L. Wei, Z. Zhang, M. Debbah, H. V. Poor, and C. Yuen, “Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions,” IEEE Commun. Surv. Tutor., vol. 26, no. 1, pp. 196–257, 2024.
  9. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.
  10. D. Gabor, “Theory of communication. part 1: The analysis of information,” Journal of the Institution of Electrical Engineers-part III: radio and communication engineering, vol. 93, no. 26, pp. 429–441, 1946.
  11. ——, “Communication theory and physics,” Transactions of the IRE Professional Group on Information Theory, vol. 1, no. 1, pp. 48–59, 1953.
  12. A. N. Kolmogorov and V. M. Tikhomirov, “ε𝜀\varepsilonitalic_ε-entropy and ε𝜀\varepsilonitalic_ε-capacity of sets in function spaces,” Uspekhi Matematicheskikh Nauk, vol. 14, no. 2, pp. 3–86, 1959.
  13. O. Bucci and G. Franceschetti, “On the spatial bandwidth of scattered fields,” IEEE Trans. Antennas Propag., vol. 35, no. 12, pp. 1445–1455, Dec. 1987.
  14. ——, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag., vol. 37, no. 7, pp. 918–926, Jul. 1989.
  15. O. M. Bucci, C. Gennarelli, and C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Propag., vol. 46, no. 3, pp. 351–359, 1998.
  16. D. A. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt., vol. 39, no. 11, pp. 1681–1699, 2000.
  17. R. Piestun and D. A. Miller, “Electromagnetic degrees of freedom of an optical system,” JOSA A, vol. 17, no. 5, pp. 892–902, 2000.
  18. A. Poon, R. Brodersen, and D. Tse, “Degrees of freedom in multiple-antenna channels: a signal space approach,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 523–536, Feb. 2005.
  19. M. Migliore, “On the role of the number of degrees of freedom of the field in MIMO channels,” IEEE Trans. Antennas Propagat., vol. 54, no. 2, pp. 620–628, Feb. 2006.
  20. M. D. Migliore, “On electromagnetics and information theory,” IEEE Trans. Antennas Propagat., vol. 56, no. 10, pp. 3188–3200, Oct. 2008.
  21. M. Franceschetti, M. D. Migliore, and P. Minero, “The capacity of wireless networks: Information-theoretic and physical limits,” IEEE Trans. Inform. Theory, vol. 55, no. 8, pp. 3413–3424, Aug. 2009.
  22. F. K. Gruber and E. A. Marengo, “New aspects of electromagnetic information theory for wireless and antenna systems,” IEEE Trans. Antennas Propagat., vol. 56, no. 11, pp. 3470–3484, Nov. 2008.
  23. M. D. Migliore, “Shannon and Kolmogorovin space communication channels,” in 2020 14th EuCAP.   Copenhagen, Denmark: IEEE, Mar. 2020, pp. 1–4.
  24. ——, “The world beneath the physical layer: An introduction to the deep physical layer,” IEEE Access, vol. 9, pp. 77 106–77 126, 2021.
  25. S. S. A. Yuan, Z. He, X. Chen, C. Huang, and W. E. I. Sha, “Electromagnetic effective degree of freedom of an MIMO system in free space,” Antennas Wirel. Propag. Lett., vol. 21, no. 3, pp. 446–450, Mar. 2022.
  26. Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C.-B. Chae, “Mutual information for electromagnetic information theory based on random fields,” IEEE Trans. Commun., vol. 71, no. 4, pp. 1982–1996, Apr. 2023.
  27. R. Ji, S. Chen, C. Huang, J. Yang, W. E. I. Sha, Z. Zhang, C. Yuen, and M. Debbah, “Extra DoF of near-field holographic MIMO communications leveraging evanescent waves,” IEEE Wirel. Commun. Lett., vol. 12, no. 4, pp. 580–584, Apr. 2023.
  28. T. Gong, L. Wei, C. Huang, Z. Yang, J. He, M. Debbah, and C. Yuen, “Holographic MIMO communications with arbitrary surface placements: Near-field LoS channel model and capacity limit,” arXiv preprint arXiv:2304.05259, 2023.
  29. C. Vanwynsberghe, J. He, and M. Debbah, “A universal framework for holographic MIMO sensing,” arXiv preprint arXiv:2309.16389, 2023.
  30. S. Mikki, “The Shannon information capacity of an arbitrary radiating surface: An electromagnetic approach,” IEEE Trans. Antennas Propag., vol. 71, no. 3, pp. 2556–2570, Mar. 2023.
  31. C. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37, no. 1, pp. 10–21, Jan. 1949.
  32. J. C. Maxwell, “Viii. a dynamical theory of the electromagnetic field,” Philos. Trans. R. Soc. Lond., no. 155, pp. 459–512, 1865.
  33. S. M. Mikki and Y. M. M. Antar, “A theory of antenna electromagnetic near field—part ii,” IEEE Trans. Antennas Propag., vol. 59, no. 12, pp. 4706–4724, Dec. 2011.
  34. H. F. Arnoldus, “Representation of the near-field, middle-field, and far-field electromagnetic green’s functions in reciprocal space,” J. Opt. Soc. Am. B, vol. 18, no. 4, pp. 547–555, Apr. 2001.
  35. J. de Rosny, G. Lerosey, and M. Fink, “Theory of electromagnetic time-reversal mirrors,” IEEE Trans. Antennas Propagat., vol. 58, no. 10, pp. 3139–3149, Oct. 2010.
  36. S. Lin, Z. Peng, and T. M. Antonsen, “A stochastic green’s function for solution of wave propagation in wave-chaotic environments,” IEEE Trans. Antennas Propagat., vol. 68, no. 5, pp. 3919–3933, May 2020.
  37. S. Lin, Y. Shao, and Z. Peng, “On the vectorial property of stochastic dyadic green’s function in complex electronic enclosures,” in 2022 IEEE EMCSI.   Spokane, WA, USA: IEEE, Aug. 2022, pp. 350–355.
  38. S. Lin, S. Luo, S. Ma, J. Feng, Y. Shao, Z. B. Drikas, B. D. Addissie, S. M. Anlage, T. Antonsen, and Z. Peng, “Predicting statistical wave physics in complex enclosures: A stochastic dyadic green’s function approach,” IEEE Trans. Electromagn. Compat., pp. 1–18, 2023.
  39. S. Lin, E. Dohme, and Z. Peng, “A stochastic green’s function - integral equation method for communication in diffuse multipath environments,” in 2018 ICEAA, Cartagena, Colombia, Sep. 2018, pp. 567–570.
  40. S. Lin, Z. Peng, E. Schamiloglu, Z. B. Drikas, and T. Antonsen, “A novel statistical model for the electromagnetic coupling to electronics inside enclosures,” in 2019 IEEE EMC+SIPI.   New Orleans, LA, USA: IEEE, Jul. 2019, pp. 499–504.
  41. S. Lin and Z. Peng, “On the statistical analysis of space-time wave physics in complex enclosures,” in 2021 IEEE 30th EPEPS.   Austin, TX, USA: IEEE, Oct. 2021, pp. 1–3.
  42. Jeng-Shiann Jiang and M. Ingram, “Spherical-wave model for short-range MIMO,” IEEE Trans. Commun., vol. 53, no. 9, pp. 1534–1541, Sep. 2005.
  43. F. Bohagen, P. Orten, and G. Oien, “On spherical vs. plane wave modeling of line-of-sight MIMO channels,” IEEE Trans. Commun., vol. 57, no. 3, pp. 841–849, Mar. 2009.
  44. S. Tarboush, H. Sarieddeen, H. Chen, M. H. Loukil, H. Jemaa, M.-S. Alouini, and T. Y. Al-Naffouri, “TeraMIMO: A channel simulator for wideband ultra-massive MIMO terahertz communications,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 12 325–12 341, Dec. 2021.
  45. M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, Jan. 2023.
  46. H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, and Y. C. Eldar, “6G wireless communications: From far-field beam steering to near-field beam focusing,” IEEE Commun. Mag., vol. 61, no. 4, pp. 72–77, Apr. 2023.
  47. R. Janaswamy, “On the EM degrees of freedom in scattering environments,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3872–3881, Oct. 2011.
  48. M. Franceschetti, M. D. Migliore, P. Minero, and F. Schettino, “The information carried by scattered waves: Near-field and nonasymptotic regimes,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 3144–3157, Jul. 2015.
  49. A. Ludwig, “Near-field far-field transformations using spherical-wave expansions,” IEEE Trans. Antennas Propag., vol. 19, no. 2, pp. 214–220, Mar. 1971.
  50. O. Bucci, F. D’Agostino, C. Gennarelli, G. Riccio, and C. Savarese, “Near-field-far-field transformation with spherical spiral scanning,” IEEE Antennas Wirel. Propag. Lett., vol. 2, pp. 263–266, 2003.
  51. S. Omi, T. Uno, T. Arima, T. Fujii, and Y. Kushiyama, “Near-field far-field transformation utilizing 2-D plane-wave expansion for monostatic RCS extrapolation,” Antennas Wirel. Propag. Lett., vol. 15, pp. 1971–1974, 2016.
  52. L. J. Chu, “Physical limitations of omni-directional antennas,” Journal of Applied Physics, vol. 19, no. 12, pp. 1163–1175, Dec. 1948.
  53. M. Gustafsson and S. Nordebo, “Optimal antenna currents for q, superdirectivity, and radiation patterns using convex optimization,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1109–1118, Mar. 2013.
  54. P. Hannan, “The element-gain paradox for a phased-array antenna,” IEEE Trans. Antennas Propagat., vol. 12, no. 4, pp. 423–433, Jul. 1964.
  55. S. S. A. Yuan, X. Chen, C. Huang, and W. E. I. Sha, “Effects of mutual coupling on degree of freedom and antenna efficiency in holographic MIMO communications,” IEEE Open J. Antennas Propag., vol. 4, pp. 237–244, 2023.
  56. D. Rhodes, “On an optimum line source for maximum directivity,” IEEE Trans. Antennas Propag., vol. 19, no. 4, pp. 485–492, Jul. 1971.
  57. R. Harrington, “On the gain and beamwidth of directional antennas,” IEEE Trans. Antennas Propag., vol. 6, no. 3, pp. 219–225, Jul. 1958.
  58. M. Pigeon, C. Delaveaud, L. Rudant, and K. Belmkaddem, “Miniature directive antennas,” Int. J. Microw. Wirel. Technol., vol. 6, no. 1, pp. 45–50, Feb. 2014.
  59. R. F. Harrington, “Effect of antenna size on gain, bandwidth, and efficiency,” J. RES. NATL. BUR. STAN. SECT. D. RAD. PROP., vol. 64D, no. 1, p. 1, Jan. 1960.
  60. B. A. Kramer, C.-C. Chen, M. Lee, and J. L. Volakis, “Fundamental limits and design guidelines for miniaturizing ultra-wideband antennas,” IEEE Antennas Propag. Mag., vol. 51, no. 4, pp. 57–69, Aug. 2009.
  61. L. La Paz and G. A. Miller, “Optimum current distributions on vertical antennas,” Proceedings of the IRE, vol. 31, no. 5, pp. 214–232, May 1943.
  62. C. J. Bouwkamp and N. G. de Bruijn, “The problem of optimum antenna current distribution,” Philips Research Reports, vol. 1, pp. 135–158, 1945.
  63. R. L. Pritchard, “Maximum directivity index of a linear point array,” The Journal of the Acoustical Society of America, vol. 26, no. 6, pp. 1034–1039, Nov. 1954.
  64. P.-S. Kildal, A. Vosoogh, and S. Maci, “Fundamental directivity limitations of dense array antennas: A numerical study using hannan’s embedded element efficiency,” Antennas Wirel. Propag. Lett., vol. 15, pp. 766–769, 2016.
  65. J. S. McLean, “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Trans. Antennas Propag., vol. 44, no. 5, pp. 672–, May 1996.
  66. R. Hansen, “Fundamental limitations in antennas,” Proc. IEEE, vol. 69, no. 2, pp. 170–182, Feb. 1981.
  67. R. Harrington, “Antenna excitation for maximum gain,” IEEE Trans. Antennas Propag., vol. 13, no. 6, pp. 896–903, Nov. 1965.
  68. J. D. Kraus, “Antennas,” McGraw-Hill Book Co., Inc., New York, N. Y., pp. 17–18, 1950.
  69. D. Pozar, “A relation between the active input impedance and the active element pattern of a phased array,” IEEE Trans. Antennas Propagat., vol. 51, no. 9, pp. 2486–2489, Sep. 2003.
  70. M. Unser, “Sampling-50 years after shannon,” Proc. IEEE, vol. 88, no. 4, pp. 569–587, Apr. 2000.
  71. R. K. Amineh, M. Ravan, A. Khalatpour, and N. K. Nikolova, “Three-dimensional near-field microwave holography using reflected and transmitted signals,” IEEE Trans. Antennas Propagat., vol. 59, no. 12, pp. 4777–4789, Dec. 2011.
  72. N. Mehrotra and A. Sabharwal, “When does multipath improve imaging resolution?” IEEE J. Sel. Areas Inf. Theory, vol. 3, no. 1, pp. 135–146, Mar. 2022.
  73. S. Loyka, “Information theory and electromagnetism: Are they related?” in 2004 10th ANTEM, pp. 1–5.
  74. A. Pizzo, A. d. J. Torres, L. Sanguinetti, and T. L. Marzetta, “Nyquist sampling and degrees of freedom of electromagnetic fields,” IEEE Trans. Signal Process., vol. 70, pp. 3935–3947, 2022.
  75. ——, “Nyquist sampling and degrees of freedom of electromagnetic fields,” IEEE Trans. Signal Process., vol. 70, pp. 3935–3947, 2022.
  76. J. E. Mazo, “Faster-than-nyquist signaling,” The Bell System Technical Journal, vol. 54, no. 8, pp. 1451–1462, Oct. 1975.
  77. J. B. Anderson, F. Rusek, and V. Öwall, “Faster-than-nyquist signaling,” Proc. IEEE, vol. 101, no. 8, pp. 1817–1830, Aug. 2013.
  78. E. Gilbert, “Increased information rate by oversampling,” IEEE Trans. Inf. Theory, vol. 39, no. 6, pp. 1973–1976, Nov. 1993.
  79. T. Koch and A. Lapidoth, “Increased capacity per unit-cost by oversampling,” in 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel, 2010, pp. 000 684–000 688.
  80. F. Rusek and J. Anderson, “The two dimensional mazo limit,” in Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., 2005, pp. 970–974.
  81. A. Barbieri, D. Fertonani, and G. Colavolpe, “Time-frequency packing for linear modulations: spectral efficiency and practical detection schemes,” IEEE Trans. Commun., vol. 57, no. 10, pp. 2951–2959, Oct. 2009.
  82. Y. J. D. Kim and Y. Feng, “Capacity of multicarrier faster-than-nyquist signaling,” in 2020 IEEE ISIT, 2020, pp. 2049–2054.
  83. A. Gattami, E. Ringh, and J. Karlsson, “Time localization and capacity of faster-than-nyquist signaling,” in 2015 IEEE GLOBECOM, 2015, pp. 1–7.
  84. C. Le, M. Schellmann, M. Fuhrwerk, and J. Peissig, “On the practical benefits of faster-than-nyquist signaling,” in 2014 International Conference on Advanced Technologies for Communications (ATC 2014), 2014, pp. 208–213.
  85. T. Setälä, M. Kaivola, and A. T. Friberg, “Decomposition of the point-dipole field into homogeneous and evanescent parts,” Phys. Rev. E, vol. 59, no. 1, pp. 1200–1206, Jan. 1999.
  86. A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Spatial characterization of electromagnetic random channels,” IEEE Open J. Commun. Soc., vol. 3, pp. 847–866, 2022.
  87. T. L. Marzetta, “Spatially-stationary propagating random field model for massive MIMO small-scale fading,” in 2018 IEEE ISIT, Jun. 2018, pp. 391–395.
  88. A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Sep. 2022.
  89. A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary model for holographic MIMO small-scale fading,” IEEE J. Select. Areas Commun., vol. 38, no. 9, pp. 1964–1979, Sep. 2020.
  90. R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell System Technical Journal, vol. 47, no. 6, pp. 957–1000, Jul. 1968.
  91. L. Wei, C. Huang, G. C. Alexandropoulos, Z. Yang, J. Yang, W. E. I. Sha, Z. Zhang, M. Debbah, and C. Yuen, “Tri-polarized holographic MIMO surfaces for near-field communications: Channel modeling and precoding design,” IEEE Trans. Wirel. Commun., pp. 1–15, 2023.
  92. A. Alayon Glazunov, M. Gustafsson, A. F. Molisch, F. Tufvesson, and G. Kristensson, “Spherical vector wave expansion of gaussian electromagnetic fields for antenna-channel interaction analysis,” IEEE Trans. Antennas Propagat., vol. 57, no. 7, pp. 2055–2067, Jul. 2009.
  93. K. Dovelos, S. D. Assimonis, H. Quoc Ngo, B. Bellalta, and M. Matthaiou, “Intelligent reflecting surfaces at terahertz bands: Channel modeling and analysis,” in 2021 IEEE ICC Workshops.   Montreal, QC, Canada: IEEE, Jun. 2021, pp. 1–6.
  94. X. Wei and L. Dai, “Channel estimation for extremely large-scale massive MIMO: Far-field, near-field, or hybrid-field?” IEEE Commun. Lett., vol. 26, no. 1, pp. 177–181, Jan. 2022.
  95. “Holographic-mimo-small-scale-fading,” https://github.com/lucasanguinetti/Holographic-MIMO-Small-Scale-Fading.
  96. T. Gong, L. Wei, Z. Yang, M. Debbah, and C. Yuen, “A generalized electromagnetic-domain channel modeling for LOS holographic MIMO with arbitrary surface placements,” in Proc. 2023 IEEE ICC Workshops.   IEEE, 2023, pp. 1324–1329.
  97. T. J. Lim and M. Franceschetti, “Information without rolling dice,” IEEE Trans. Inf. Theory, vol. 63, no. 3, pp. 1349–1363, Mar. 2017.
  98. M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space electromagnetic channel,” IEEE Trans. Antennas Propag., vol. 56, no. 2, pp. 524–531, Feb. 2008.
  99. H. Landau, “On szegö’s eigenvalue distribution theorem and non-hermitian kernels,” Journal d’Analyse Mathématique, vol. 28, no. 1, pp. 335–357, 1975.
  100. D. Slepian, “Some comments on fourier analysis, uncertainty and modeling,” SIAM review, vol. 25, no. 3, pp. 379–393, 1983.
  101. M. Franceschetti, “On landau’s eigenvalue theorem and information cut-sets,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 5042–5051, Sept. 2015.
  102. R. Pierri and F. Soldovieri, “On the information content of the radiated fields in the near zone over bounded domains,” Inverse Problems, vol. 14, no. 2, pp. 321–337, Jan. 1998.
  103. N. Mehrotra and A. Sabharwal, “On the degrees of freedom region for simultaneous imaging & uplink communication,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1768–1779, Jun. 2022.
  104. A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Degrees of freedom of holographic MIMO channels,” in 2020 IEEE 21st SPAWC, May 2020, pp. 1–5.
  105. L. Wei, C. Huang, G. C. Alexandropoulos, W. E. I. Sha, Z. Zhang, M. Debbah, and C. Yuen, “Multi-user holographic MIMO surfaces: Channel modeling and spectral efficiency analysis,” IEEE J. Sel. Top. Signal Process., vol. 16, no. 5, pp. 1112–1124, Aug. 2022.
  106. C. Ehrenborg and M. Gustafsson, “Physical bounds and radiation modes for MIMO antennas,” IEEE Trans. Antennas Propag., vol. 68, no. 6, pp. 4302–4311, Jun. 2020.
  107. C. Ehrenborg, M. Gustafsson, and M. Capek, “Capacity bounds and degrees of freedom for MIMO antennas constrained by Q-factor,” IEEE Trans. Antennas Propag., vol. 69, no. 9, pp. 5388–5400, Sep. 2021.
  108. A. S. de Sena, P. H. J. Nardelli, D. B. da Costa, F. R. M. Lima, L. Yang, P. Popovski, Z. Ding, and C. B. Papadias, “IRS-assisted massive MIMO-NOMA networks: Exploiting wave polarization,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7166–7183, Nov. 2021.
  109. L. Wei, C. Huang, G. C. Alexandropoulos, Z. Yang, J. Yang, W. E. I. Sha, Z. Zhang, M. Debbah, and C. Yuen, “Tri-polarized holographic MIMO surface in near-field: Channel modeling and precoding design,” Nov. 2022.
  110. “Electromagnetic information - kolmogorov,” https://sites.google.com/unicas.it/electromagnetic-information/download/programs/kolmogorov.
  111. Y. Cheng, W. Peng, C. Huang, G. C. Alexandropoulos, C. Yuen, and M. Debbah, “RIS-aided wireless communications: Extra degrees of freedom via rotation and location optimization,” IEEE Trans. Wirel. Commun., vol. 21, no. 8, pp. 6656–6671, Aug. 2022.
  112. Y. Zhang, J. Zhang, Y. Zhang, Y. Yao, and G. Liu, “Capacity analysis of holographic MIMO channels with practical constraints,” IEEE Wirel. Commun. Lett., vol. 12, no. 6, pp. 1101–1105, 2023.
  113. M. D. Migliore, “On the sampling of the electromagnetic field radiated by sparse sources,” IEEE Trans. Antennas Propagat., vol. 63, no. 2, pp. 553–564, Feb. 2015.
  114. S. S. A. Yuan, Z. He, S. Sun, X. Chen, C. Huang, and W. E. I. Sha, “Electromagnetic effective-degree-of-freedom limit of a MIMO system in 2-D inhomogeneous environment,” Electronics, vol. 11, no. 19, 2022. [Online]. Available: https://www.mdpi.com/2079-9292/11/19/3232
  115. R. Li, D. Li, J. Ma, Z. Feng, L. Zhang, S. Tan, W. E. I. Sha, H. Chen, and E.-P. Li, “An electromagnetic information theory based model for efficient characterization of MIMO systems in complex space,” IEEE Trans. Antennas Propag., vol. 71, no. 4, pp. 3497–3508, 2023.
  116. Y. Shen, Z. He, W. E. I. Sha, S. S. A. Yuan, and X. Chen, “Electromagnetic effective-degree-of-freedom prediction with parabolic equation method,” IEEE Trans. Antennas Propag., vol. 71, no. 4, pp. 3752–3757, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.