Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 146 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Operator-Based Detecting, Learning, and Stabilizing Unstable Periodic Orbits of Chaotic Attractors (2310.12156v1)

Published 7 Sep 2023 in nlin.AO, cs.LG, math.DS, math.OC, and math.SP

Abstract: This paper examines the use of operator-theoretic approaches to the analysis of chaotic systems through the lens of their unstable periodic orbits (UPOs). Our approach involves three data-driven steps for detecting, identifying, and stabilizing UPOs. We demonstrate the use of kernel integral operators within delay coordinates as an innovative method for UPO detection. For identifying the dynamic behavior associated with each individual UPO, we utilize the Koopman operator to present the dynamics as linear equations in the space of Koopman eigenfunctions. This allows for characterizing the chaotic attractor by investigating its principal dynamical modes across varying UPOs. We extend this methodology into an interpretable machine learning framework aimed at stabilizing strange attractors on their UPOs. To illustrate the efficacy of our approach, we apply it to the Lorenz attractor as a case study.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.