Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing ML model accuracy for Digital VLSI circuits using diffusion models: A study on synthetic data generation (2310.10691v1)

Published 15 Oct 2023 in cs.LG and cs.AR

Abstract: Generative AI has seen remarkable growth over the past few years, with diffusion models being state-of-the-art for image generation. This study investigates the use of diffusion models in generating artificial data generation for electronic circuits for enhancing the accuracy of subsequent machine learning models in tasks such as performance assessment, design, and testing when training data is usually known to be very limited. We utilize simulations in the HSPICE design environment with 22nm CMOS technology nodes to obtain representative real training data for our proposed diffusion model. Our results demonstrate the close resemblance of synthetic data using diffusion model to real data. We validate the quality of generated data, and demonstrate that data augmentation certainly effective in predictive analysis of VLSI design for digital circuits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems (Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds.), vol. 27, Curran Associates, Inc., 2014.
  2. S. K. Danisetty, S. R. Mylaram, and P. Kumar, “Adaptive consensus optimization method for gans,” in 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2023.
  3. D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.
  4. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” 2020.
  5. D. Amuru, A. Zahra, H. V. Vudumula, P. K. Cherupally, S. R. Gurram, A. Ahmad, and Z. Abbas, “Ai/ml algorithms and applications in vlsi design and technology,” Integration, vol. 93, p. 102048, 2023.
  6. A. Jafari, S. Sadri, and M. Zekri, “Design optimization of analog integrated circuits by using artificial neural networks,” in 2010 International Conference of Soft Computing and Pattern Recognition, pp. 385–388, 2010.
  7. Y. Li, Y. Wang, Y. Li, R. Zhou, and Z. Lin, “An artificial neural network assisted optimization system for analog design space exploration,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2640–2653, 2020.
  8. S. Devi, G. Tilwankar, and R. Zele, “Automated design of analog circuits using machine learning techniques,” in 2021 25th International Symposium on VLSI Design and Test (VDAT), pp. 1–6, 2021.
  9. E. Afacan, N. Lourenço, R. Martins, and G. Dündar, “Review: Machine learning techniques in analog/rf integrated circuit design, synthesis, layout, and test,” Integration, vol. 77, pp. 113–130, 2021.
  10. N. Kahraman and T. Yildirim, “Technology independent circuit sizing for fundamental analog circuits using artificial neural networks,” in 2008 Ph.D. Research in Microelectronics and Electronics, pp. 1–4, 2008.
  11. K. Agarwal, A. Jain, D. Amuru, and Z. Abbas, “Fast and efficient resnn and genetic optimization for pvt aware performance enhancement in digital circuits,” in 2022 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–4, 2022.
  12. D. Amuru, M. S. Ahmed, and Z. Abbas, “An efficient gradient boosting approach for pvt aware estimation of leakage power and propagation delay in cmos/finfet digital cells,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2020.
  13. A. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne, “Data management challenges for deep learning,” in 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 140–147, IEEE, 2019.
  14. D. Amuru, A. Zahra, and Z. Abbas, “Statistical variation aware leakage and total power estimation of 16 nm vlsi digital circuits based on regression models,” in VLSI Design and Test (A. Sengupta, S. Dasgupta, V. Singh, R. Sharma, and S. Kumar Vishvakarma, eds.), (Singapore), pp. 565–578, Springer Singapore, 2019.
  15. S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understanding data augmentation for classification: when to warp?,” in 2016 international conference on digital image computing: techniques and applications (DICTA), pp. 1–6, IEEE, 2016.
  16. A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” in 2018 international interdisciplinary PhD workshop (IIPhDW), pp. 117–122, IEEE, 2018.
  17. M. Asif, O. Nazeer, N. Javaid, E. H. Alkhammash, and M. Hadjouni, “Data augmentation using biwgan, feature extraction and classification by hybrid 2dcnn and bilstm to detect non-technical losses in smart grids,” IEEE Access, vol. 10, pp. 27467–27483, 2022.
  18. W. Tan and H. Guo, “Data augmentation and cnn classification for automatic covid-19 diagnosis from ct-scan images on small dataset,” arXiv, 2021.
  19. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, pp. 1–48, 2019.
  20. A. Kortylewski, A. Schneider, T. Gerig, B. Egger, A. Morel-Forster, and T. Vetter, “Training deep face recognition systems with synthetic data,” arXiv preprint arXiv:1802.05891, 2018.
  21. T. Chalongvorachai and K. Woraratpanya, “3dvae-ersg: 3d variational autoencoder for extremely rare signal generation,” in 2021 13th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 177–182, 2021.
  22. X. Zhang and J. Zhou, “A heavy-tailed distribution data generation method based on generative adversarial network,” in 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), pp. 535–540, 2021.
  23. I. Abbasnejad, S. Sridharan, D. Nguyen, S. Denman, C. Fookes, and S. Lucey, “Using synthetic data to improve facial expression analysis with 3d convolutional networks,” in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1609–1618, 2017.
  24. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” 2021.
  25. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” 2023.
  26. “Hspice circuit simulator.” https://cseweb.ucsd.edu/classes/wi10/cse241a/assign/hspice_sa.pdf.
  27. D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” 2021.
  28. L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of generative models,” 2015.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Prasha Srivastava (2 papers)
  2. Pawan Kumar (173 papers)
  3. Zia Abbas (3 papers)

Summary

We haven't generated a summary for this paper yet.