Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized mutual information and their reference priors under Csizar f-divergence (2310.10530v4)

Published 16 Oct 2023 in math.ST and stat.TH

Abstract: In Bayesian theory, the role of information is central. The influence exerted by prior information on posterior outcomes often jeopardizes Bayesian studies, due to the potentially subjective nature of the prior choice. In modeling where a priori knowledge is lacking, the reference prior theory emerges as a proficient tool. Based on the criterion of mutual information, this theory makes it possible to construct a non-informative prior whose choice can be qualified as objective. In this paper, we contribute to the enrichment of reference prior theory. Indeed, we unveil an original analogy between reference prior theory and Global Sensitivity Analysis, from which we propose a natural generalization of the mutual information definition. Leveraging dissimilarity measures between probability distributions, such as f-divergences, we provide a formalized framework for what we term generalized reference priors. Our main result offers a limit of mutual information, simplifying the definition of reference priors as its maximal arguments. This approach opens a new way that facilitates the theoretical derivation of reference priors under constraints or within specific classes. In the absence of constraints, we further prove that the Jeffreys prior maximizes the generalized mutual information considered.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.