Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Predictive Models to Understand Risk Factors for Maternal and Fetal Outcomes (2310.10203v1)

Published 16 Oct 2023 in cs.LG

Abstract: Although most pregnancies result in a good outcome, complications are not uncommon and can be associated with serious implications for mothers and babies. Predictive modeling has the potential to improve outcomes through better understanding of risk factors, heightened surveillance for high risk patients, and more timely and appropriate interventions, thereby helping obstetricians deliver better care. We identify and study the most important risk factors for four types of pregnancy complications: (i) severe maternal morbidity, (ii) shoulder dystocia, (iii) preterm preeclampsia, and (iv) antepartum stillbirth. We use an Explainable Boosting Machine (EBM), a high-accuracy glass-box learning method, for prediction and identification of important risk factors. We undertake external validation and perform an extensive robustness analysis of the EBM models. EBMs match the accuracy of other black-box ML methods such as deep neural networks and random forests, and outperform logistic regression, while being more interpretable. EBMs prove to be robust. The interpretability of the EBM models reveals surprising insights into the features contributing to risk (e.g. maternal height is the second most important feature for shoulder dystocia) and may have potential for clinical application in the prediction and prevention of serious complications in pregnancy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Declercq, E., Zephyrin, L.: Maternal mortality in the united states: a primer. Commonwealth Fund (2020) (3) Creanga, A.A., Bateman, B.T., Kuklina, E.V., Callaghan, W.M.: Racial and ethnic disparities in severe maternal morbidity: a multistate analysis, 2008-2010. American journal of obstetrics and gynecology 210(5), 435–1 (2014) (4) Gao, C., Osmundson, S., Yan, X., Edwards, D.V., Malin, B.A., Chen, Y.: Learning to identify severe maternal morbidity from electronic health records. Studies in health technology and informatics 264, 143 (2019) (5) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Creanga, A.A., Bateman, B.T., Kuklina, E.V., Callaghan, W.M.: Racial and ethnic disparities in severe maternal morbidity: a multistate analysis, 2008-2010. American journal of obstetrics and gynecology 210(5), 435–1 (2014) (4) Gao, C., Osmundson, S., Yan, X., Edwards, D.V., Malin, B.A., Chen, Y.: Learning to identify severe maternal morbidity from electronic health records. Studies in health technology and informatics 264, 143 (2019) (5) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gao, C., Osmundson, S., Yan, X., Edwards, D.V., Malin, B.A., Chen, Y.: Learning to identify severe maternal morbidity from electronic health records. Studies in health technology and informatics 264, 143 (2019) (5) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  2. Creanga, A.A., Bateman, B.T., Kuklina, E.V., Callaghan, W.M.: Racial and ethnic disparities in severe maternal morbidity: a multistate analysis, 2008-2010. American journal of obstetrics and gynecology 210(5), 435–1 (2014) (4) Gao, C., Osmundson, S., Yan, X., Edwards, D.V., Malin, B.A., Chen, Y.: Learning to identify severe maternal morbidity from electronic health records. Studies in health technology and informatics 264, 143 (2019) (5) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gao, C., Osmundson, S., Yan, X., Edwards, D.V., Malin, B.A., Chen, Y.: Learning to identify severe maternal morbidity from electronic health records. Studies in health technology and informatics 264, 143 (2019) (5) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  3. Gao, C., Osmundson, S., Yan, X., Edwards, D.V., Malin, B.A., Chen, Y.: Learning to identify severe maternal morbidity from electronic health records. Studies in health technology and informatics 264, 143 (2019) (5) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  4. Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 1017 insights into severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 629–630 (2021) (6) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  5. Cartus, A.R., Naimi, A.I., Himes, K.P., Jarlenski, M., Parisi, S.M., Bodnar, L.M.: Can ensemble machine learning improve the accuracy of severe maternal morbidity screening in a perinatal database? Epidemiology 33(1), 95–104 (2021) (7) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  6. Callaghan, W.M., MacKay, A.P., Berg, C.J.: Identification of severe maternal morbidity during delivery hospitalizations, united states, 1991-2003. American journal of obstetrics and gynecology 199(2), 133–1 (2008) (8) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  7. Lengerich, B.J., Caruana, R., Weeks, W.B., Painter, I., Spencer, S., Sitcov, K., Daly, C., Souter, V.: 46 length of labor and severe maternal morbidity in the ntsv population. American Journal of Obstetrics & Gynecology 224(2), 33 (2021) (9) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  8. Bennett, R., Mulla, Z.D., Parikh, P., Hauspurg, A., Razzaghi, T.: An imbalance-aware deep neural network for early prediction of preeclampsia. Plos one 17(4), 0266042 (2022) (10) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  9. Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Saleem, K., Neto, A.J.V.: Predicting hypertensive disorders in high-risk pregnancy using the random forest approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–5 (2017). IEEE (11) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  10. Bosschieter, T.M., Xu, Z., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Preterm preeclampsia prediction using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 409 (2023) (12) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  11. Jhee, J.H., Lee, S., Park, Y., Lee, S.E., Kim, Y.A., Kang, S.-W., Kwon, J.-Y., Park, J.T.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One 14(8), 0221202 (2019) (13) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  12. Tsur, A., Batsry, L., Toussia-Cohen, S., Rosenstein, M., Barak, O., Brezinov, Y., Yoeli-Ullman, R., Sivan, E., Sirota, M., Druzin, M., et al.: Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound in Obstetrics & Gynecology 56(4), 588–596 (2020) (14) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  13. Bartal, M.F., Tsur, A., Sibai, B.M., Aran, D., Bicocca, M.J., Chauhan, S.P.: 651 clinical efficacy of a machine learning model for prediction of shoulder dystocia. American Journal of Obstetrics & Gynecology 224(2), 409 (2021) (15) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  14. Bosschieter, T.M., Lan, H., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Caruana, R., Souter, V.: Unique insights into risk factors for antepartum stillbirth using explainable ai. American Journal of Obstetrics & Gynecology 228(1), 403–404 (2023) (16) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  15. Allotey, J., Whittle, R., Snell, K., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A., Magee, L., Smith, G., Sandall, J., et al.: External validation of prognostic models to predict stillbirth using international prediction of pregnancy complications (ippic) network database: individual participant data meta-analysis. Ultrasound in Obstetrics & Gynecology 59(2), 209–219 (2022) (17) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  16. Malacova, E., Tippaya, S., Bailey, H.D., Chai, K., Farrant, B.M., Gebremedhin, A.T., Leonard, H., Marinovich, M.L., Nassar, N., Phatak, A., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from western australia, 1980–2015. Scientific reports 10(1), 1–8 (2020) (18) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  17. Steyerberg, E.W., Harrell, F.E.: Prediction models need appropriate internal, internal–external, and external validation. Journal of clinical epidemiology 69, 245–247 (2016) (19) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  18. Wynants, L., Collins, G.S., Van Calster, B.: Key steps and common pitfalls in developing and validating risk models. BJOG: An International Journal of Obstetrics & Gynaecology 124(3), 423–432 (2017) (20) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  19. Kleinrouweler, C.E., Cheong-See, F.M., Collins, G.S., Kwee, A., Thangaratinam, S., Khan, K.S., Mol, B.W.J., Pajkrt, E., Moons, K.G., Schuit, E.: Prognostic models in obstetrics: available, but far from applicable. American journal of obstetrics and gynecology 214(1), 79–90 (2016) (21) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  20. Squires, D.A.: The us health system in perspective: a comparison of twelve industrialized nations. Issue Brief (Commonwealth Fund) 16, 1–14 (2011) (22) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  21. Yamada, G., Hayakawa, K., Asai, Y., Matsunaga, N., Ohtsu, H., Hojo, M., Hashimoto, M., Kobayashi, K., Sasaki, R., Okamoto, T., et al.: External validation and update of prediction models for unfavorable outcomes in hospitalized patients with covid-19 in japan. Journal of Infection and Chemotherapy 27(7), 1043–1050 (2021) (23) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  22. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) (24) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  23. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) (25) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  24. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment 32(14-15), 2627–2636 (1998) (26) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  25. Kleinbaum, David G and Dietz, K and Gail, M and Klein, Mitchel and Klein, Mitchell: Logistic Regression, p. 536. Springer, New York, NY (2002) (27) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  26. Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering 14, 156–180 (2020) (28) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  27. Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1(3), 297–310 (1986). https://doi.org/10.1214/ss/1177013604 (29) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  28. Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–158 (2012) (30) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  29. Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019) (31) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  30. Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2013) (32) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  31. Zhou, J., Tse, G., Lee, S., Liu, T., Wu, W.K., Cao, Z., Zeng, D.D., Wong, I.C.K., Zhang, Q., Cheung, B.M.Y.: Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with covid-19: a retrospective cohort study in hong kong. medRxiv (2020) (33) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  32. Decroos, T., Davis, J.: Interpretable prediction of goals in soccer. In: Proceedings of the AAAI-20 Workshop on Artificial Intelligence in Team Sports (2019) (34) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  33. Xenopoulos, P., Freeman, W.R., Silva, C.: Analyzing the differences between professional and amateur esports through win probability. In: Proceedings of the ACM Web Conference 2022, pp. 3418–3427 (2022) (35) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  34. Maxwell, A.E., Sharma, M., Donaldson, K.A.: Explainable boosting machines for slope failure spatial predictive modeling. Remote Sensing 13(24), 4991 (2021) (36) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  35. Cannarozzo, C.: The merger-driven evolution of early-type galaxies and the connection with their dark matter halos (2021) (37) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  36. Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02), 75–91 (1995) (38) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  37. Foundation for Health Care Quality: Obstetrical Care Outcome Assessment Program (OBCOAP). https://www.qualityhealth.org/obcoap/ (39) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  38. Group, E.I.: Introduction to the Distressed Communities Index (DCI). https://eig.org/distressed-communities/ Accessed Jan. 28, 2023 (40) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  39. Xu, Z., Bosschieter, T.M., Lan, H., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. American Journal of Obstetrics & Gynecology 228(1), 404–405 (2023) (41) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  40. Lan, H., Bosschieter, T.M., Xu, Z., Lengerich, B., Nori, H., Sitcov, K., Painter, I., Souter, V., Caruana, R.: Understanding risk factors for shoulder dystocia using interpretable machine learning. American Journal of Obstetrics & Gynecology 228(1), 753 (2023) (42) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  41. Economic Research Service, U.S.D.O.A.: Rural-Urban Commuting Area Codes. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/ Accessed Jan. 28, 2023 (43) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  42. Jones, C.P.: Invited commentary:“race,” racism, and the practice of epidemiology. American journal of epidemiology 154(4), 299–304 (2001) (44) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  43. Bedoya, A.D., Economou-Zavlanos, N.J., Goldstein, B.A., Young, A., Jelovsek, J.E., O’Brien, C., Parrish, A.B., Elengold, S., Lytle, K., Balu, S., et al.: A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association 29(9), 1631–1636 (2022) (45) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  44. Paulus, J.K., Kent, D.M.: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. NPJ digital medicine 3(1), 99 (2020) (46) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021) Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
  45. Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., Caruana, R.: How interpretable and trustworthy are gams? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 95–105 (2021)
Citations (3)

Summary

We haven't generated a summary for this paper yet.