Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D-BBS: Global Localization for 3D Point Cloud Scan Matching Using Branch-and-Bound Algorithm (2310.10023v5)

Published 16 Oct 2023 in cs.RO

Abstract: This paper presents an accurate and fast 3D global localization method, 3D-BBS, that extends the existing branch-and-bound (BnB)-based 2D scan matching (BBS) algorithm. To reduce memory consumption, we utilize a sparse hash table for storing hierarchical 3D voxel maps. To improve the processing cost of BBS in 3D space, we propose an efficient roto-translational space branching. Furthermore, we devise a batched BnB algorithm to fully leverage GPU parallel processing. Through experiments in simulated and real environments, we demonstrated that the 3D-BBS enabled accurate global localization with only a 3D LiDAR scan roughly aligned in the gravity direction and a 3D pre-built map. This method required only 878 msec on average to perform global localization and outperformed state-of-the-art global registration methods in terms of accuracy and processing speed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and certifiable point cloud registration,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 314–333, apr 2021.
  2. H. Lim, S. Yeon, S. Ryu, Y. Lee, Y. Kim, J. Yun, E. Jung, D. Lee, and H. Myung, “A single correspondence is enough: Robust global registration to avoid degeneracy in urban environments,” in IEEE International Conference on Robotics and Automation (ICRA).   IEEE, may 2022.
  3. Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in European Conference on Computer Vision (ECCV).   Springer International Publishing, 2016, pp. 766–782.
  4. W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d LIDAR SLAM,” in IEEE International Conference on Robotics and Automation (ICRA).   IEEE, may 2016.
  5. H. Yin, X. Xu, S. Lu, X. Chen, R. Xiong, S. Shen, C. Stachniss, and Y. Wang, “A survey on global lidar localization: Challenges, advances and open problems,” in arXiv preprint arXiv:2302.07433, 2023.
  6. R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (FPFH) for 3d registration,” in IEEE International Conference on Robotics and Automation (ICRA).   IEEE, may 2009.
  7. S. Salti, F. Tombari, and L. D. Stefano, “SHOT: Unique signatures of histograms for surface and texture description,” Computer Vision and Image Understanding, vol. 125, pp. 251–264, aug 2014.
  8. M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” in Readings in Computer Vision.   Elsevier, 1987, pp. 726–740.
  9. X. Chen, I. Vizzo, T. Labe, J. Behley, and C. Stachniss, “Range image-based LiDAR localization for autonomous vehicles,” in IEEE International Conference on Robotics and Automation (ICRA).   IEEE, may 2021.
  10. F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,” in IEEE International Conference on Robotics and Automation (ICRA), vol. 2.   IEEE, 1999, pp. 1322–1328.
  11. G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, oct 2018.
  12. X. Chen, T. Läbe, A. Milioto, T. Röhling, J. Behley, and C. Stachniss, “OverlapNet: a siamese network for computing LiDAR scan similarity with applications to loop closing and localization,” Autonomous Robots, vol. 46, no. 1, pp. 61–81, aug 2021.
  13. J. Ma, J. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen, “Overlaptransformer: An efficient and yaw-angle-invariant transformer network for lidar-based place recognition,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6958–6965, 2022.
  14. Y. Cui, X. Chen, Y. Zhang, J. Dong, Q. Wu, and F. Zhu, “BoW3d: Bag of words for real-time loop closing in 3d LiDAR SLAM,” IEEE Robotics and Automation Letters, vol. 8, no. 5, pp. 2828–2835, may 2023.
  15. Y. Cui, Y. Zhang, J. Dong, H. Sun, and F. Zhu, “Link3d: Linear keypoints representation for 3d lidar point cloud,” in arXiv preprint arXiv:2206.05927, 2022.
  16. A. H. Land and A. G. Doig, “An automatic method of solving discrete programming problems,” Econometrica, vol. 28, no. 3, p. 497, jul 1960.
  17. D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, “Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning,” Discrete Optimization, vol. 19, pp. 79–102, feb 2016.
  18. C. Olsson, F. Kahl, and M. Oskarsson, “Branch-and-bound methods for euclidean registration problems,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 783–794, may 2009.
  19. J. Yang, H. Li, and Y. Jia, “Go-ICP: Solving 3d registration efficiently and globally optimally,” in IEEE International Conference on Computer Vision (ICCV).   IEEE, dec 2013, pp. 1457–1464.
  20. P. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, feb 1992.
  21. M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross, “Optimized spatial hashing for collision detection of deformable objects,” in Vision, Modeling, and Visualization (VMV), 2003, pp. 47–54.
  22. A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics: Science and Systems.   Robotics: Science and Systems Foundation, jun 2009.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com