Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Deterministic Search Strategy Based on Residual Projections for Point Cloud Registration with Correspondences (2305.11716v2)

Published 19 May 2023 in cs.CV

Abstract: Estimating the rigid transformation between two LiDAR scans through putative 3D correspondences is a typical point cloud registration paradigm. Current 3D feature matching approaches commonly lead to numerous outlier correspondences, making outlier-robust registration techniques indispensable. Many recent studies have adopted the branch and bound (BnB) optimization framework to solve the correspondence-based point cloud registration problem globally and deterministically. Nonetheless, BnB-based methods are time-consuming to search the entire 6-dimensional parameter space, since their computational complexity is exponential to the solution domain dimension in the worst-case. To enhance algorithm efficiency, existing works attempt to decouple the 6 degrees of freedom (DOF) original problem into two 3-DOF sub-problems, thereby reducing the search space. In contrast, our approach introduces a novel pose decoupling strategy based on residual projections, decomposing the raw registration problem into three sub-problems. Subsequently, we embed interval stabbing into BnB to solve these sub-problems within a lower two-dimensional domain, resulting in efficient and deterministic registration. Moreover, our method can be adapted to address the challenging problem of simultaneous pose and registration. Through comprehensive experiments conducted on challenging synthetic and real-world datasets, we demonstrate that the proposed method outperforms state-of-the-art methods in terms of efficiency while maintaining comparable robustness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. Y. Xia, Y. Xu, S. Li, R. Wang, J. Du, D. Cremers, and U. Stilla, “Soe-net: A self-attention and orientation encoding network for point cloud based place recognition,” in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2021, pp. 11 348–11 357.
  2. X. Li, Y. Liu, V. Lakshminarasimhan, H. Cao, F. Zhang, and A. Knoll, “Globally optimal robust radar calibration in intelligent transportation systems,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–14, 2023.
  3. J.-U. Im, S.-W. Ki, and J.-H. Won, “Omni point: 3d lidar-based feature extraction method for place recognition and point registration,” IEEE Transactions on Intelligent Vehicles, pp. 1–18, 2023.
  4. G. Blais and M. D. Levine, “Registering multiview range data to create 3d computer objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 820–824, 1995.
  5. J. Zhang, S. Huang, J. Liu, X. Zhu, and F. Xu, “Pyrf-pcr: A robust three-stage 3d point cloud registration for outdoor scene,” IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp. 1270–1281, 2024.
  6. D. Cattaneo, M. Vaghi, and A. Valada, “Lcdnet: Deep loop closure detection and point cloud registration for lidar slam,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2074–2093, 2022.
  7. Y. Xia, Q. Wu, W. Li, A. B. Chan, and U. Stilla, “A lightweight and detector-free 3d single object tracker on point clouds,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  8. A. P. Bustos and T.-J. Chin, “Guaranteed outlier removal for point cloud registration with correspondences,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2868–2882, 2017.
  9. H. Yang, J. Shi, and L. Carlone, “Teaser: Fast and certifiable point cloud registration,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 314–333, 2020.
  10. Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in European conference on computer vision.   Springer, 2016, pp. 766–782.
  11. D. Barath and J. Matas, “Graph-cut ransac: Local optimization on spatially coherent structures,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 4961–4974, 2021.
  12. P. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992.
  13. J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-icp: A globally optimal solution to 3d icp point-set registration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 11, pp. 2241–2254, 2016.
  14. D. Borrmann, J. Elseberg, and A. Nüchter, “Thermal 3d mapping of building façades,” in Intelligent Autonomous Systems 12: Volume 1 Proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, Jeju Island, Korea.   Springer, 2013, pp. 173–182.
  15. P. W. Theiler, J. D. Wegner, and K. Schindler, “Keypoint-based 4-points congruent sets–automated marker-less registration of laser scans,” ISPRS journal of photogrammetry and remote sensing, vol. 96, pp. 149–163, 2014.
  16. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in 2012 IEEE conference on computer vision and pattern recognition.   IEEE, 2012, pp. 3354–3361.
  17. B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996, pp. 303–312.
  18. R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d registration,” in 2009 IEEE international conference on robotics and automation.   IEEE, 2009, pp. 3212–3217.
  19. C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric features,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 8958–8966.
  20. X. Bai, Z. Luo, L. Zhou, H. Fu, L. Quan, and C.-L. Tai, “D3feat: Joint learning of dense detection and description of 3d local features,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 6359–6367.
  21. S. Huang, Z. Gojcic, M. Usvyatsov, A. Wieser, and K. Schindler, “Predator: Registration of 3d point clouds with low overlap,” in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2021, pp. 4267–4276.
  22. S. Ao, Q. Hu, B. Yang, A. Markham, and Y. Guo, “Spinnet: Learning a general surface descriptor for 3d point cloud registration,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 11 753–11 762.
  23. H. Li, “Consensus set maximization with guaranteed global optimality for robust geometry estimation,” in 2009 IEEE 12th International Conference on Computer Vision, 2009, pp. 1074–1080.
  24. D. Campbell, L. Petersson, L. Kneip, and H. Li, “Globally-optimal inlier set maximisation for camera pose and correspondence estimation,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 2, pp. 328–342, 2018.
  25. H. Le, T.-J. Chin, A. Eriksson, T.-T. Do, and D. Suter, “Deterministic approximate methods for maximum consensus robust fitting,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 3, pp. 842–857, 2019.
  26. R. I. Hartley and F. Kahl, “Global optimization through rotation space search,” International Journal of Computer Vision, vol. 82, no. 1, pp. 64–79, 2009.
  27. D. Campbell and L. Petersson, “Gogma: Globally-optimal gaussian mixture alignment,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 5685–5694.
  28. A. P. Bustos, T.-J. Chin, A. Eriksson, H. Li, and D. Suter, “Fast rotation search with stereographic projections for 3d registration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 11, pp. 2227–2240, 2016.
  29. J. Straub, T. Campbell, J. P. How, and J. W. Fisher, “Efficient global point cloud alignment using bayesian nonparametric mixtures,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2941–2950.
  30. Y. Liu, C. Wang, Z. Song, and M. Wang, “Efficient global point cloud registration by matching rotation invariant features through translation search,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 448–463.
  31. W. Chen, H. Li, Q. Nie, and Y.-H. Liu, “Deterministic point cloud registration via novel transformation decomposition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6348–6356.
  32. Z. Cai, T.-J. Chin, A. P. Bustos, and K. Schindler, “Practical optimal registration of terrestrial lidar scan pairs,” ISPRS journal of photogrammetry and remote sensing, vol. 147, pp. 118–131, 2019.
  33. X. Li, Y. Liu, Y. Xia, V. Lakshminarasimhan, H. Cao, F. Zhang, U. Stilla, and A. Knoll, “Fast and deterministic (3+1)dof point set registration with gravity prior,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 199, pp. 118–132, 2023.
  34. Y. Liu, G. Chen, and A. Knoll, “Absolute pose estimation with a known direction by motion decoupling,” IEEE Transactions on Circuits and Systems for Video Technology, 2023.
  35. X. Li, Y. Liu, Y. Wang, C. Wang, M. Wang, and Z. Song, “Fast and globally optimal rigid registration of 3d point sets by transformation decomposition,” arXiv preprint arXiv:1812.11307, 2018.
  36. C. Wang, Y. Liu, Y. Wang, X. Li, and M. Wang, “Efficient and outlier-robust simultaneous pose and correspondence determination by branch-and-bound and transformation decomposition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.
  37. Y. Jiao, Y. Wang, X. Ding, M. Wang, and R. Xiong, “Deterministic optimality for robust vehicle localization using visual measurements,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 5397–5410, 2022.
  38. K. Sim and R. Hartley, “Removing outliers using the L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT norm,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1.   IEEE, 2006, pp. 485–494.
  39. F. Kahl and R. Hartley, “Multiple-view geometry under the L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-norm,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 9, pp. 1603–1617, 2008.
  40. L. Peng, M. C. Tsakiris, and R. Vidal, “Arcs: Accurate rotation and correspondence search,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 153–11 163.
  41. Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M. Kwok, “A comprehensive performance evaluation of 3d local feature descriptors,” International Journal of Computer Vision, vol. 116, no. 1, pp. 66–89, 2016.
  42. Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match: 3d point cloud matching with smoothed densities,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 5545–5554.
  43. H. Wang, Y. Liu, Z. Dong, and W. Wang, “You only hypothesize once: Point cloud registration with rotation-equivariant descriptors,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 1630–1641.
  44. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, pp. 91–110, 2004.
  45. Y. Xia, M. Gladkova, R. Wang, Q. Li, U. Stilla, J. F. Henriques, and D. Cremers, “Casspr: Cross attention single scan place recognition,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 8461–8472.
  46. Y. Xia, L. Shi, Z. Ding, J. F. Henriques, and D. Cremers, “Text2loc: 3d point cloud localization from natural language,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.
  47. Z. Chen, K. Sun, F. Yang, and W. Tao, “Sc2-pcr: A second order spatial compatibility for efficient and robust point cloud registration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13 221–13 231.
  48. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
  49. J. Li, Q. Hu, and M. Ai, “Gesac: Robust graph enhanced sample consensus for point cloud registration,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 167, pp. 363–374, 2020.
  50. L. Sun, “Ransic: Fast and highly robust estimation for rotation search and point cloud registration using invariant compatibility,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 143–150, 2021.
  51. D. Barath, J. Noskova, and J. Matas, “Marginalizing sample consensus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 8420–8432, 2021.
  52. G. D. Pais, S. Ramalingam, V. M. Govindu, J. C. Nascimento, R. Chellappa, and P. Miraldo, “3dregnet: A deep neural network for 3d point registration,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 7193–7203.
  53. C. Choy, W. Dong, and V. Koltun, “Deep global registration,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2514–2523.
  54. X. Bai, Z. Luo, L. Zhou, H. Chen, L. Li, Z. Hu, H. Fu, and C.-L. Tai, “Pointdsc: Robust point cloud registration using deep spatial consistency,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15 859–15 869.
  55. J. Lee, S. Kim, M. Cho, and J. Park, “Deep hough voting for robust global registration,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 15 994–16 003.
  56. Z. Chen, F. Yang, and W. Tao, “Detarnet: Decoupling translation and rotation by siamese network for point cloud registration,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 401–409.
  57. A. Myronenko and X. Song, “Point set registration: Coherent point drift,” IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 12, pp. 2262–2275, 2010.
  58. B. Jian and B. C. Vemuri, “Robust point set registration using gaussian mixture models,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 8, pp. 1633–1645, 2010.
  59. Y. Wang and J. M. Solomon, “Deep closest point: Learning representations for point cloud registration,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 3523–3532.
  60. Y. Wu, X. Hu, Y. Zhang, M. Gong, W. Ma, and Q. Miao, “Sacf-net: Skip-attention based correspondence filtering network for point cloud registration,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 8, pp. 3585–3595, 2023.
  61. Y. Yuan, Y. Wu, X. Fan, M. Gong, W. Ma, and Q. Miao, “Egst: Enhanced geometric structure transformer for point cloud registration,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–13, 2023.
  62. Y. Wu, Y. Zhang, W. Ma, M. Gong, X. Fan, M. Zhang, A. K. Qin, and Q. Miao, “Rornet: Partial-to-partial registration network with reliable overlapping representations,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14, 2023.
  63. W. Ma, M. Yue, Y. Wu, Y. Yuan, H. Zhu, B. Hou, and L. Jiao, “Explore the influence of shallow information on point cloud registration,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13, 2023.
  64. Y. Yuan, Y. Wu, M. Yue, M. Gong, X. Fan, W. Ma, and Q. Miao, “Learning discriminative features via multi-hierarchical mutual information for unsupervised point cloud registration,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2024.
  65. Y. Liu, G. Chen, and A. Knoll, “Globally optimal vertical direction estimation in atlanta world,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 4, pp. 1949–1962, 2020.
  66. Y. Liu, Y. Wang, M. Wang, G. Chen, A. Knoll, and Z. Song, “Globally optimal linear model fitting with unit-norm constraint,” International Journal of Computer Vision, vol. 130, no. 4, pp. 933–946, 2022.
  67. X. Zhang, J. Yang, S. Zhang, and Y. Zhang, “3d registration with maximal cliques,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 17 745–17 754.
  68. R. Yao, S. Du, W. Cui, A. Ye, F. Wen, H. Zhang, Z. Tian, and Y. Gao, “Hunter: Exploring high-order consistency for point cloud registration with severe outliers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 12, pp. 14 760–14 776, 2023.
  69. J. Li, “A practical o(n2) outlier removal method for correspondence-based point cloud registration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp. 3926–3939, 2022.
  70. J. Li, P. Shi, Q. Hu, and Y. Zhang, “Qgore: Quadratic-time guaranteed outlier removal for point cloud registration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–16, 2023.
  71. R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in 2011 IEEE international conference on robotics and automation.   IEEE, 2011, pp. 1–4.
  72. Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object recognition,” in 2009 IEEE 12th international conference on computer vision workshops, ICCV Workshops.   IEEE, 2009, pp. 689–696.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xinyi Li (97 papers)
  2. Hu Cao (17 papers)
  3. Yinlong Liu (17 papers)
  4. Xueli Liu (1 paper)
  5. Feihu Zhang (15 papers)
  6. Alois Knoll (190 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.