Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

2SFGL: A Simple And Robust Protocol For Graph-Based Fraud Detection (2310.08335v1)

Published 12 Oct 2023 in cs.CR and cs.AI

Abstract: Financial crime detection using graph learning improves financial safety and efficiency. However, criminals may commit financial crimes across different institutions to avoid detection, which increases the difficulty of detection for financial institutions which use local data for graph learning. As most financial institutions are subject to strict regulations in regards to data privacy protection, the training data is often isolated and conventional learning technology cannot handle the problem. Federated learning (FL) allows multiple institutions to train a model without revealing their datasets to each other, hence ensuring data privacy protection. In this paper, we proposes a novel two-stage approach to federated graph learning (2SFGL): The first stage of 2SFGL involves the virtual fusion of multiparty graphs, and the second involves model training and inference on the virtual graph. We evaluate our framework on a conventional fraud detection task based on the FraudAmazonDataset and FraudYelpDataset. Experimental results show that integrating and applying a GCN (Graph Convolutional Network) with our 2SFGL framework to the same task results in a 17.6\%-30.2\% increase in performance on several typical metrics compared to the case only using FedAvg, while integrating GraphSAGE with 2SFGL results in a 6\%-16.2\% increase in performance compared to the case only using FedAvg. We conclude that our proposed framework is a robust and simple protocol which can be simply integrated to pre-existing graph-based fraud detection methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.