Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Horizons that Gyre and Gimble: A Differential Characterization of Null Hypersurfaces (2310.08141v2)

Published 12 Oct 2023 in gr-qc and math.DG

Abstract: Motivated by the thermodynamics of black hole solutions conformal to stationary solutions, we study the geometric invariant theory of null hypersurfaces. It is well-known that a null hypersurface in a Lorentzian manifold can be treated as a Carrollian geometry. Additional structure can be added to this geometry by choosing a connection which yields a Carrollian manifold. In the literature various authors have introduced Koszul connections to study the study the physics on these hypersurfaces. In this paper we examine the various Carrollian geometries and their relationship to null hypersurface embeddings. We specify the geometric data required to construct a rigid Carrollian geometry, and we argue that a connection with torsion is the most natural object to study Carrollian manifolds. We then use this connection to develop a hypersurface calculus suitable for a study of intrinsic and extrinsic differential invariants on embedded null hypersurfaces; motivating examples are given, including geometric invariants preserved under conformal transformations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116:061102, Feb 2016.
  2. R. M. Wald. General relativity. University of Chicago press, 2010.
  3. I. Booth. Black-hole boundaries. Canadian journal of physics, 83(11):1073–1099, 2005.
  4. A. C. Wall. Proof of the generalized second law for rapidly changing fields and arbitrary horizon slices. Physical Review D, 85(10):104049, 2012.
  5. J. Sultana and C. C. Dyer. Conformal killing horizons. Journal of mathematical physics, 45(12):4764–4776, 2004.
  6. R. H. Dicke. Mach’s principle and invariance under transformation of units. Physical review, 125(6):2163, 1962.
  7. V. Faraoni and S. Nadeau. (pseudo) issue of the conformal frame revisited. Physical Review D, 75(2):023501, 2007.
  8. The renormalization group and weyl invariance. Classical and Quantum Gravity, 30(11):115015, 2013.
  9. Evolving black holes from conformal transformations of static solutions. Physical Review D, 95(8):084031, 2017.
  10. Exact solutions to quadratic gravity. Physical Review D, 95(8):084025, 2017.
  11. J.M. Lévy-Leblond. Une nouvelle limite non-relativiste du groupe de poincaré. Annales De L Institut Henri Poincare-physique Theorique, 3:1–12, 1965.
  12. R. F. Penna. Near-horizon carroll symmetry and black hole love numbers. arXiv: High Energy Physics - Theory, 2018.
  13. L. Donnay and C. Marteau. Carrollian physics at the black hole horizon. Classical and Quantum Gravity, 36(16):165002, jul 2019.
  14. Carroll structures, null geometry, and conformal isometries. Physical Review D, 100(4), aug 2019.
  15. Brown-York charges at null boundaries. Journal of High Energy Physics, 2022(1), jan 2022.
  16. Relativistic fluids, hydrodynamic frames and their galilean versus carrollian avatars. Journal of High Energy Physics, 2022(9), sep 2022.
  17. Conformal carroll groups and BMS symmetry. Classical and Quantum Gravity, 31(9):092001, apr 2014.
  18. J. Hartong. Gauging the carroll algebra and ultra-relativistic gravity. Journal of High Energy Physics, 2015(8), aug 2015.
  19. Y. Herfray. Asymptotic shear and the intrinsic conformal geometry of null-infinity. Journal of Mathematical Physics, 61(7), jul 2020.
  20. Y. Herfray. Carrollian manifolds and null infinity: a view from cartan geometry. Classical and Quantum Gravity, 39(21):215005, sep 2022.
  21. K. Prabhu. Twistorial description of bondi-metzner-sachs symmetries at null infinity. Physical Review D, 105(2), jan 2022.
  22. Scattering amplitudes: Celestial and carrollian. Physical Review Letters, 128(24), jun 2022.
  23. W.B. Liu and J. Long. Symmetry group at future null infinity: Scalar theory. Physical Review D, 107(12), jun 2023.
  24. Flat holography and carrollian fluids. Journal of High Energy Physics, 2018(7), jul 2018.
  25. Covariant galilean versus carrollian hydrodynamics from relativistic fluids. Classical and Quantum Gravity, 35(16):165001, jul 2018.
  26. Carroll versus newton and galilei: two dual non-einsteinian concepts of time. Classical and Quantum Gravity, 31(8):085016, 2014.
  27. Field theories with conformal carrollian symmetry. Journal of High Energy Physics, 2019(5), may 2019.
  28. Field theories on null manifolds. Journal of High Energy Physics, 2020(2), feb 2020.
  29. BMS field theories and weyl anomaly. Journal of High Energy Physics, 2021(7), jul 2021.
  30. Interacting conformal carrollian theories: Cues from electrodynamics. Physical Review D, 103(10), may 2021.
  31. Conformal carroll scalars with boosts. SciPost Physics, 14(4):086, 2023.
  32. D. Rivera-Betancour and M. Vilatte. Revisiting the carrollian scalar field. Physical Review D, 106(8):085004, 2022.
  33. M Henneaux and Patricio Salgado-Rebolledo. Carroll contractions of lorentz-invariant theories. Journal of High Energy Physics, 2021(11):1–29, 2021.
  34. R. Penrose. Structure of space-time. In Battelle Rencontres, pages 121–235, 1968.
  35. M. Mars and J. M. M. Senovilla. Geometry of general hypersurfaces in spacetime: junction conditions. Classical and Quantum Gravity, 10(9):1865, 1993.
  36. L. Freidel and P. Jai-akson. Carrollian hydrodynamics and symplectic structure on stretched horizons, 2022.
  37. R Penrose. The geometry of impulsive gravitational waves 1972 general relativity, papers in honour of jl synge, edited by l. o’raifeartaigh, 1972.
  38. X. Bekaert and K. Morand. Connections and dynamical trajectories in generalised newton-cartan gravity. ii. an ambient perspective. Journal of Mathematical Physics, 59(7), 2018.
  39. P. Nurowski and D. C. Robinson. Intrinsic geometry of a null hypersurface. Classical and Quantum Gravity, 17(19):4065, 2000.
  40. Geometry of generic isolated horizons. Classical and Quantum Gravity, 19(6):1195, 2002.
  41. Conformal carroll groups. Journal of Physics A: Mathematical and Theoretical, 47(33):335204, 2014.
  42. J. Armas and E. Have. Carrollian fluids and spontaneous breaking of boost symmetry. arXiv preprint arXiv:2308.10594, 2023.
  43. Carroll symmetry, dark energy and inflation. Frontiers in Physics, 10:810405, 2022.
  44. J. Figueroa-O’Farrill. On the intrinsic torsion of spacetime structures. arXiv preprint arXiv:2009.01948, 2020.
  45. Marc Mars. Constraint equations for general hypersurfaces and applications to shells. Gen. Rel. Grav., 45:2175–2221, 2013.
  46. Marc Mars. Hypersurface data: General properties and birkhoff theorem in spherical symmetry. Mediterranean Journal of Mathematics, 17, 12 2020.
  47. M. Henneaux. Geometry of Zero Signature Space-times. Bull. Soc. Math. Belg., 31:47–63, 1979.
  48. Setting the connection free in the galilei and carroll expansions of gravity. 2023.
  49. Carroll Fermions. 12 2023.
  50. A. Karlhede. A review of the geometrical equivalence of metrics in general relativity. General Relativity and Gravitation, 12:693–707, 1980.
  51. Geometric horizons. Physics Letters B, 771:131–135, 2017.
  52. P. J. Olver. Equivalence, invariants and symmetry. Cambridge University Press, 1995.
  53. Kundt spacetimes. Classical and Quantum Gravity, 26(10):105016, 2009.
  54. Universal spacetimes in four dimensions. Journal of High Energy Physics, 2017(10):1–20, 2017.
  55. A. Coley and D. McNutt. Identification of black hole horizons using scalar curvature invariants. Classical and Quantum Gravity, 35(2):025013, 2017.
  56. V. Moncrief and J. Isenberg. Symmetries of cosmological cauchy horizons. Communications in Mathematical Physics, 89:387–413, 1983.
  57. On the rigidity theorem for spacetimes with a stationary event horizon or a compact cauchy horizon. Communications in mathematical physics, 204:691–707, 1999.
  58. I. Booth. Spacetime near isolated and dynamical trapping horizons. Physical Review D, 87(2):024008, 2013.
  59. Abstract formulation of the spacetime matching problem and null thin shells. Phys. Rev. D, 109(4):044050, 2024.
  60. Magnetic carrollian gravity from the carroll algebra. Journal of High Energy Physics, 2022(9), sep 2022.
  61. P Hájiček. Exact models of charged black holes: I. geometry of totally geodesic null hypersurface. Communications in Mathematical Physics, 34:37–52, 1973.
  62. P Hájíček. Stationary electrovacuum spacetimes with bifurcate horizons. Journal of Mathematical Physics, 16(3):518–522, 1975.
  63. E. Gourgoulhon. Generalized damour-navier-stokes equation applied to trapping horizons. Physical Review D, 72(10):104007, 2005.
  64. M. Spivak. A Comprehensive Introduction to Differential Geometry. Publish or Perish, Inc., 1999.
  65. F. Hopfmüller and L. Freidel. Gravity degrees of freedom on a null surface. Physical Review D, 95:104006, May 2017.
  66. S. Blitz. Toward a classification of conformal hypersurface invariants. Journal of Mathematical Physics, 64(8):082504, 08 2023.
  67. S. N. G. Thakurta. Kerr metric in an expanding universe. Indian Journal of Physics, 55(4):304–310, 1981.
  68. J. Sultana and C. C. Dyer. Cosmological black holes: A black hole in the einstein-de sitter universe. General Relativity and Gravitation, 37:1347–1370, 2005.
  69. Cosmological black holes and white holes with time-dependent mass. Physical Review D, 91(8):084043, 2015.
  70. Realistic fluids as source for dynamically accreting black holes in a cosmological background. Physical Review D, 86(12):124020, 2012.
  71. J. E. Åman and A. Karlhede. A computer-aided complete classification of geometries in general relativity. first results. Physics Letters A, 80(4):229–231, 1980.
  72. Symmetry and equivalence in teleparallel gravity. Journal of Mathematical Physics, 61(7), 2020.
  73. Scalar polynomial curvature invariant vanishing on the event horizon of any black hole metric conformal to a static spherical metric. Physical Review D, 95(8):084044, 2017.
  74. D. D. McNutt. Curvature invariant characterization of event horizons of four-dimensional black holes conformal to stationary black holes. Physical Review D, 96(10):104022, 2017.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com