Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Measurement of nuclear effects in neutrino-argon interactions using generalized kinematic imbalance variables with the MicroBooNE detector (2310.06082v4)

Published 9 Oct 2023 in nucl-ex and hep-ex

Abstract: We present a set of new generalized kinematic imbalance variables that can be measured in neutrino scattering. These variables extend previous measurements of kinematic imbalance on the transverse plane, and are more sensitive to modeling of nuclear effects. We demonstrate the enhanced power of these variables using simulation, and then use the MicroBooNE detector to measure them for the first time. We report flux-integrated single- and double-differential measurements of charged-current muon neutrino scattering on argon using a topolgy with one muon and one proton in the final state as a function of these novel kinematic imbalance variables. These measurements allow us to demonstrate that the treatment of charged current quasielastic interactions in GENIE version 2 is inadequate to describe data. Further, they reveal tensions with more modern generator predictions particularly in regions of phase space where final state interactions are important.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. M. Tanabashi et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018).
  2. K. Abe et al. (T2K Collaboration), Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations, Nature 580, 339 (2020a).
  3. B. Abi et al. (DUNE Collaboration), Long-baseline neutrino oscillation physics potential of the DUNE experiment, Eur. Phys. J. C 80, 978 (2020).
  4. B. Abi et al. (DUNE Collaboration), Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment, Eur. Phys. J. C 81, 322 (2021a).
  5. B. Abi et al. (DUNE Collaboration), Supernova neutrino burst detection with the Deep Underground Neutrino Experiment, Eur. Phys. J. C 81, 423 (2021b).
  6. K. Abe et al. (Hyper-Kamiokande Collaboration), Hyper-Kamiokande Design Report (2018a), arXiv:1805.04163 .
  7. M. B. Avanzini et al., Comparisons and challenges of modern neutrino-scattering experiments, Phys. Rev. D 105, 092004 (2022).
  8. L. Alvarez-Ruso and othersr, Nustec white paper: Status and challenges of neutrino–nucleus scattering, Progress in Particle and Nuclear Physics 100, 1 (2018).
  9. M. Betancourt et al., Comparisons and challenges of modern neutrino scattering experiments (tensions2016 report), Physics Reports 773-774, 1 (2018), comparisons and challenges of modern neutrino scattering experiments (TENSIONS2016 report).
  10. K. Abe et al. (T2K Collaboration), First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single-π+superscript𝜋{\pi}^{+}italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT production channel containing at least one proton, Phys. Rev. D 103, 112009 (2021).
  11. P. Abratenko et al. (MicroBooNE Collaboration), First double-differential measurement of kinematic imbalance in neutrino interactions with the MicroBooNE detector (2023a), arXiv:2301.03706 .
  12. P. Abratenko et al. (MicroBooNE Collaboration), Multi-Differential Cross Section Measurements of Muon-Neutrino-Argon Quasielastic-like Reactions with the MicroBooNE Detector (2023b), arXiv:2301.03700 .
  13. R. Acciarri et al. (MicroBooNE Collaboration), Design and Construction of the MicroBooNE Detector, J. Instrum. 12 (02), P02017.
  14. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), The Neutrino Flux prediction at MiniBooNE, Phys. Rev. D 79, 072002 (2009).
  15. X.-G. Lu et al., Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy, Phys. Rev. C 94, 015503 (2016).
  16. X.-G. Lu et al. (MINERvA Collaboration), Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at ⟨Eν⟩=3⁢GeVdelimited-⟨⟩subscript𝐸𝜈3GeV\langle{E}_{\nu}\rangle=3\,\mathrm{GeV}⟨ italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ⟩ = 3 roman_GeV, Phys. Rev. Lett. 121, 022504 (2018).
  17. T. Cai et al. (MINERvA Collaboration), Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions, Phys. Rev. D 101, 092001 (2020).
  18. L. Bathe-Peters, S. Gardiner, and R. Guenette, Comparing generator predictions of transverse kinematic imbalance in neutrino-argon scattering (2022), arXiv:2201.04664 .
  19. K. Abe et al. (T2K Collaboration), Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K, Phys. Rev. D 98, 032003 (2018b).
  20. D. Coplowe et al. (MINER⁢ν⁢AMINER𝜈A\mathrm{MINER}\nu\mathrm{A}roman_MINER italic_ν roman_A Collaboration), Probing nuclear effects with neutrino-induced charged-current neutral pion production, Phys. Rev. D 102, 072007 (2020).
  21. A. P. Furmanski and J. T. Sobczyk, Neutrino energy reconstruction from one-muon and one-proton events, Phys. Rev. C 95, 065501 (2017).
  22. X. Lu and J. T. Sobczyk, Identification of nuclear effects in neutrino and antineutrino interactions on nuclei using generalized final-state correlations, Phys. Rev. C 99, 055504 (2019).
  23. X. Lu, Neutrino Shadow Play-Kinematic determination of nuclear effects at MINERvA, https://minerva-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=17864 (2018).
  24. R. Gran et al. (K2K Collaboration), Measurement of the quasielastic axial vector mass in neutrino interactions on oxygen, Phys. Rev. D 74, 052002 (2006).
  25. A. Bodek and T. Cai, Removal energies and final state interaction in lepton nucleus scattering, Eur. Phys. J. C 79, 293 (2019).
  26. B. Bourguille, J. Nieves, and F. Sánchez, Inclusive and exclusive neutrino-nucleus cross sections and the reconstruction of the interaction kinematics, J. High Energ. Phys. 2021, 153.
  27. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614, 87 (2010).
  28. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator: Physics and User Manual (2015), arXiv:1510.05494 .
  29. L. Alvarez-Ruso et al. (GENIE Collaboration), Recent highlights from GENIE v3, Eur. Phys. J. ST 230, 4449 (2021).
  30. U. Mosel, Neutrino event generators: foundation, status and future, Phys. Rev. G 46, 113001 (2019).
  31. T. Golan et al., NuWro: the Wroclaw Monte Carlo Generator of Neutrino Interactions, Nucl.Phys.Proc.Suppl. 499, 229 (2012).
  32. Y. Hayato, A neutrino interaction simulation program library NEUT, Acta Phys. Polon. B40, 2477 (2009).
  33. P. Abratenko et al. (MicroBooNE Collaboration), First measurement of differential charged current quasielasticlike νμsubscript𝜈𝜇{\nu}_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT-argon scattering cross sections with the microboone detector, Phys. Rev. Lett. 125, 201803 (2020a).
  34. P. Abratenko et al. (MicroBooNE Collaboration), Measurement of differential cross sections for νμsubscript𝜈𝜇{\nu}_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT-ar charged-current interactions with protons and no pions in the final state with the microboone detector, Phys. Rev. D 102, 112013 (2020b).
  35. C. Llewellyn Smith, Neutrino Reactions at Accelerator Energies, Phys. Rept. 3, 261 (1972).
  36. T. Katori, Meson Exchange Current (MEC) Models in Neutrino Interaction Generators, AIP Conf. Proc. 1663, 030001 (2015).
  37. D. Rein and L. Sehgal, Neutrino Excitation of Baryon Resonances and Single Pion Production, Annals Phys. 133, 79 (1981).
  38. T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and Manual, J. High Energ. Phys. 2006 (05), 026.
  39. R. Carrasco and E. Oset, Interaction of Real Photons With Nuclei From 100-MeV to 500-MeV, Nucl. Phys. A 536, 445 (1992).
  40. J. Engel, Approximate treatment of lepton distortion in charged current neutrino scattering from nuclei, Phys. Rev. C 57, 2004 (1998).
  41. J. Nieves, J. E. Amaro, and M. Valverde, Inclusive quasielastic charged-current neutrino-nucleus reactions, Phys. Rev. C 70, 055503 (2004).
  42. J. Schwehr, D. Cherdack, and R. Gran, GENIE implementation of IFIC Valencia model for QE-like 2p2h neutrino-nucleus cross section (2016), arXiv:1601.02038 .
  43. C. Berger and L. Sehgal, Lepton mass effects in single pion production by neutrinos, Phys. Rev. D 76, 113004 (2007).
  44. J. Tena-Vidal et al. (GENIE Collaboration), Neutrino-nucleon cross-section model tuning in genie v3, Phys. Rev. D 104, 072009 (2021).
  45. C. Berger and L. Sehgal, PCAC and coherent pion production by low energy neutrinos, Phys. Rev. D 79, 053003 (2009).
  46. S. Dolan, G. D. Megias, and S. Bolognesi, Implementation of the susav2-meson exchange current 1p1h and 2p2h models in genie and analysis of nuclear effects in T2K measurements, Phys. Rev. D 101, 033003 (2020).
  47. T. Leitner, L. Alvarez-Ruso, and U. Mosel, Charged current neutrino nucleus interactions at intermediate energies, Phys. Rev. C 73, 065502 (2006).
  48. J. Nieves, I. R. Simo, and M. J. V. Vacas, Inclusive charged-current neutrino-nucleus reactions, Phys. Rev. C 83, 045501 (2011).
  49. K. M. Graczyk and J. T. Sobczyk, Form Factors in the Quark Resonance Model, Phys. Rev. D 77, 053001 (2008), [Erratum: Phys. Rev. D 79, 079903 (2009)].
  50. Y. Hayato and L. Pickering, The NEUT neutrino interaction simulation program library, Eur. Phys. J. ST 230, 4469 (2021).
  51. P. S. Auchincloss et al., Measurement of the inclusive charged-current cross section for neutrino and antineutrino scattering on isoscalar nucleons, Zeitschrift für Physik C Particles and Fields 1007, 1431 (1990).
  52. S. Agostinelli et al. (GEANT4), GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003).
  53. K. Mahn, A search for muon neutrino and antineutrino disappearance in the Booster Neutrino Beam, Ph.D. thesis, Columbia University (2009).
  54. K. Abe et al., Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the t2k off-axis near detector, J. High Energ. Phys 2020, 114 (2020b).
  55. P. Abratenko et al. (MicroBooNE Collaboration), First measurement of inclusive muon neutrino charged current differential cross sections on argon at Eν∼0.8⁢  ⁢GeVsimilar-tosubscript𝐸𝜈0.8  GeV{E}_{\nu}\sim 0.8\text{ }\text{ }\mathrm{GeV}italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ∼ 0.8 roman_GeV with the microboone detector, Phys. Rev. Lett. 123, 131801 (2019).
  56. A. Filkins et al. (MINERν𝜈\nuitalic_νA Collaboration), Double-differential inclusive charged-current νμsubscript𝜈𝜇{\nu}_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT cross sections on hydrocarbon in minerva at ⟨Eν⟩∼3.5⁢  ⁢GeVsimilar-todelimited-⟨⟩subscript𝐸𝜈3.5  GeV\langle{E}_{\nu}\rangle\sim 3.5\text{ }\text{ }\mathrm{GeV}⟨ italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ⟩ ∼ 3.5 roman_GeV, Phys. Rev. D 101, 112007 (2020).
  57. C. L. McGivern et al. (MINERvA Collaboration), Cross sections for νμsubscript𝜈𝜇{\nu}_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT and ν¯μsubscript¯𝜈𝜇{\overline{\nu}}_{\mu}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT induced pion production on hydrocarbon in the few-GeV region using MINERvA, Phys. Rev. D 94, 052005 (2016).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.