Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Isospectrality breaking in the Teukolsky formalism (2310.06033v1)

Published 9 Oct 2023 in gr-qc

Abstract: General relativity, though the most successful theory of gravity, has been continuously modified to resolve its incompatibility with quantum mechanics and explain the origin of dark energy or dark matter. One way to test these modified gravity theories is to study the gravitational waves emitted during the ringdown of binary mergers, which consist of quasinormal modes. In several modified gravity theories, the even- and odd-parity gravitational perturbations of non-rotating and slowly rotating black holes have different quasinormal mode frequencies, breaking the isospectrality of general relativity. For black holes with arbitrary spin in modified gravity, there were no avenues to compute quasinormal modes except numerical relativity, until recent extensions of the Teukolsky formalism. In this work, we describe how to use the modified Teukolsky formalism to study isospectrality breaking in modified gravity. We first introduce how definite-parity modes are defined through combinations of Weyl scalars in general relativity, and then, we extend this definition to modified gravity. We then use the eigenvalue perturbation method to show how the degeneracy in quasinormal mode frequencies of different parity is broken in modified gravity. To demonstrate our analysis, we also apply it to some specific modified gravity theories. Our work lays the foundation for studying isospectrality breaking of quasinormal modes in modified gravity for black holes with arbitrary spin.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. C. M. Will, Living Reviews in Relativity 17, 4 (2014).
  2. T. Damour and A. M. Polyakov, Nucl. Phys. B 423, 532 (1994), arXiv:hep-th/9401069 .
  3. Y. Lozano and A. Ramirez, Universe 7, 250 (2021), arXiv:2106.12195 [hep-th] .
  4. S. Nojiri and S. D. Odintsov, Phys. Rept. 505, 59 (2011), arXiv:1011.0544 [gr-qc] .
  5. T. Padmanabhan, Phys. Rept. 380, 235 (2003), arXiv:hep-th/0212290 .
  6. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK, 1984).
  7. A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 21, R53 (2004), arXiv:gr-qc/0404018 .
  8. R. Jackiw and S. Y. Pi, Phys. Rev. D 68, 104012 (2003), arXiv:gr-qc/0308071 .
  9. S. Alexander and N. Yunes, Phys. Rept. 480, 1 (2009), arXiv:0907.2562 [hep-th] .
  10. A. Nishizawa and T. Kobayashi, Phys. Rev. D 98, 124018 (2018), arXiv:1809.00815 [gr-qc] .
  11. P. Horava, Phys. Rev. D 79, 084008 (2009), arXiv:0901.3775 [hep-th] .
  12. C. P. Burgess, Living Reviews in Relativity 7, 5 (2004), arXiv: gr-qc/0311082.
  13. P. A. Cano and A. Ruipérez, JHEP 05, 189 (2019), [Erratum: JHEP 03, 187 (2020)], arXiv:1901.01315 [gr-qc] .
  14. A. Conroy and T. Koivisto, JCAP 12, 016 (2019), arXiv:1908.04313 [gr-qc] .
  15. V. Cardoso and L. Gualtieri, Phys. Rev. D 80, 064008 (2009), [Erratum: Phys.Rev.D 81, 089903 (2010)], arXiv:0907.5008 [gr-qc] .
  16. N. Loutrel and N. Yunes, Phys. Rev. D 106, 064009 (2022), arXiv:2205.02675 [gr-qc] .
  17. S. H. S. Alexander and S. J. Gates, Jr., JCAP 0606, 018 (2006), arXiv:hep-th/0409014 [hep-th] .
  18. I. Bena and D. R. Mayerson, JHEP 03, 114 (2021), arXiv:2007.09152 [hep-th] .
  19. K. Fransen and D. R. Mayerson, Phys. Rev. D 106, 064035 (2022), arXiv:2201.03569 [gr-qc] .
  20. S. H. Alexander and N. Yunes, Phys. Rev. D 97, 064033 (2018), arXiv:1712.01853 [gr-qc] .
  21. S. Alexander and J. Martin, Phys. Rev. D 71, 063526 (2005), arXiv:hep-th/0410230 .
  22. T. Takahashi and J. Soda, Phys. Rev. Lett. 102, 231301 (2009), arXiv:0904.0554 [hep-th] .
  23. D. Yoshida and J. Soda, Int. J. Mod. Phys. D 27, 1850096 (2018), arXiv:1708.09592 [gr-qc] .
  24. N. Seto and A. Taruya, Phys. Rev. Lett. 99, 121101 (2007), arXiv:0707.0535 [astro-ph] .
  25. S. Chandrasekhar, The mathematical theory of black holes, The International series of monographs on physics (Clarendon Press, 1983).
  26. P. Pani and V. Cardoso, Phys. Rev. D 79, 084031 (2009), arXiv:0902.1569 [gr-qc] .
  27. L. Pierini and L. Gualtieri, Phys. Rev. D 103, 124017 (2021), arXiv:2103.09870 [gr-qc] .
  28. L. Pierini and L. Gualtieri, Phys. Rev. D 106, 104009 (2022), arXiv:2207.11267 [gr-qc] .
  29. M. Isi and W. M. Farr, “Analyzing black-hole ringdowns,”  (2021a), arXiv:2107.05609 .
  30. T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
  31. F. J. Zerilli, Phys. Rev. D 2, 2141 (1970).
  32. V. Moncrief, Annals Phys. 88, 323 (1974).
  33. C. V. Vishveshwara, Phys. Rev. D 1, 2870 (1970a).
  34. C. V. Vishveshwara, Nature 227, 936 (1970b).
  35. S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
  36. W. H. Press and S. A. Teukolsky, Astrophys. J. 185, 649 (1973).
  37. S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443 (1974).
  38. E. Newman and R. Penrose, Journal of Mathematical Physics 3, 566 (1962), https://doi.org/10.1063/1.1724257 .
  39. J. M. Cohen and L. S. Kegeles, Physics Letters A 54, 5 (1975).
  40. P. L. Chrzanowski, Phys. Rev. D 11, 2042 (1975).
  41. L. S. Kegeles and J. M. Cohen, Physical Review D 19, 1641 (1979).
  42. C. O. Lousto and B. F. Whiting, Physical Review D 66, 024026 (2002).
  43. A. Ori, Physical Review D 67, 124010 (2003), arXiv:gr-qc/0207045.
  44. N. Yunes and J. Gonzalez, Physical Review D 73, 020410 (2006), arXiv: gr-qc/0510076.
  45. A. Z. Petrov, Gen. Rel. Grav. 32, 1661 (2000).
  46. R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run,”  (2021), arXiv:2111.03606 [gr-qc] .
  47. P. Pani, Applications of perturbation theory in black hole physics, Ph.D. thesis, Cagliari U. (2011).
  48. F.-L. Julié and E. Berti, Phys. Rev. D 100, 104061 (2019), arXiv:1909.05258 [gr-qc] .
  49. A. Hussain and A. Zimmerman, Phys. Rev. D 106, 104018 (2022), arXiv:2206.10653 [gr-qc] .
  50. N. Yunes and F. Pretorius, Phys. Rev. D 79, 084043 (2009), arXiv:0902.4669 [gr-qc] .
  51. D. J. Gross and J. H. Sloan, Nuclear Physics B 291, 41 (1987).
  52. F. Moura and R. Schiappa, Class. Quant. Grav. 24, 361 (2007), arXiv:hep-th/0605001 [hep-th] .
  53. T. Kobayashi, Rept. Prog. Phys. 82, 086901 (2019), arXiv:1901.07183 [gr-qc] .
  54. T. P. Sotiriou, Lect. Notes Phys. 892, 3 (2015), arXiv:1404.2955 [gr-qc] .
  55. T. P. Sotiriou, Class. Quant. Grav. 23, 5117 (2006), arXiv:gr-qc/0604028 [gr-qc] .
  56. T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010), arXiv:0805.1726 [gr-qc] .
  57. A. Schmidt-May and M. von Strauss, J. Phys. A 49, 183001 (2016), arXiv:1512.00021 [hep-th] .
  58. R. M. Wald, Physical Review Letters 41, 203 (1978).
  59. A. A. Starobinsky, Sov. Phys. JETP 37, 28 (1973).
  60. A. A. Starobinskil and S. M. Churilov, Sov. Phys. JETP 65, 1 (1974).
  61. F. S. Miguel,   (2023), arXiv:2308.03832 [gr-qc] .
  62. M. Campanelli and C. O. Lousto, Physical Review D 59, 124022 (1999), arXiv:gr-qc/9811019.
  63. C. Bender and S. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory (Springer New York, 2013).
  64. N. Yunes and L. C. Stein, Phys. Rev. D 83, 104002 (2011), arXiv:1101.2921 [gr-qc] .
  65. P. Wagle, D. Li, N. Yunes,  and Y. Chen, “Perturbations of slowly rotating black holes in dynamical Chern Simons gravity,”  (2023), in preparation.
  66. D. Li, P. Wagle, N. Yunes,  and Y. Chen, “Quasinormal modes of slowly rotating black holes in dynamical Chern Simons gravity using curvature perturbations,” In preparation.
  67. D. Ayzenberg and N. Yunes, Phys. Rev. D 90, 044066 (2014).
  68. M. Isi and W. M. Farr, “maxisi/ringdown: Initial ringdown release,”  (2021b).
  69. G. Carullo, W. Del Pozzo,  and J. Veitch, “pyRing: a time-domain ringdown analysis python package,” git.ligo.org/lscsoft/pyring (2023).
  70. M. Isi and W. M. Farr,   (2021c), arXiv:2107.05609 [gr-qc] .
  71. S. Chandrasekhar, Proc. Roy. Soc. Lond. A 343, 289 (1975).
  72. M. Sasaki and T. Nakamura, Prog. Theor. Phys. 67, 1788 (1982).
  73. G. Darboux,   (1999), 10.48550/ARXIV.PHYSICS/9908003.
Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.