A Leptonic ALP Portal to the Dark Sector (2310.05827v2)
Abstract: We discuss the leptonic ALP portal as a simple scenario that connects observed discrepancies in anomalous magnetic moments to the Dark Matter relic abundance. In this framework an axion-like particle in the multi-MeV range couples to SM leptons and a DM fermion, with mass above the ALP mass but below a GeV. The ALP contributes to $(g-2)_\mu$ and $(g-2)_e$ dominantly through 2-loop Barr-Zee diagrams, while the DM abundance is generated by $p$-wave annihilation to ALP pairs. Constraints from beam-dump experiments, colliders and CMB probes are very stringent, and restrict the viable parameter space to a rather narrow region that will be tested in the near future.
- P. Athron, C. Balázs, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and H. Stöckinger-Kim, “New physics explanations of aμ𝜇{}_{\mu}start_FLOATSUBSCRIPT italic_μ end_FLOATSUBSCRIPT in light of the FNAL muon g−--2 measurement,” JHEP 09 (2021) 080, arXiv:2104.03691 [hep-ph].
- L. Calibbi, R. Ziegler, and J. Zupan, “Minimal models for dark matter and the muon g−--2 anomaly,” JHEP 07 (2018) 046, arXiv:1804.00009 [hep-ph].
- B. De, D. Das, M. Mitra, and N. Sahoo, “Magnetic moments of leptons, charged lepton flavor violations and dark matter phenomenology of a minimal radiative Dirac neutrino mass model,” JHEP 08 (2022) 202, arXiv:2106.00979 [hep-ph].
- Y. Nomura and J. Thaler, “Dark Matter through the Axion Portal,” Phys. Rev. D 79 (2009) 075008, arXiv:0810.5397 [hep-ph].
- M. Freytsis and Z. Ligeti, “On dark matter models with uniquely spin-dependent detection possibilities,” Phys. Rev. D 83 (2011) 115009, arXiv:1012.5317 [hep-ph].
- M. J. Dolan, F. Kahlhoefer, C. McCabe, and K. Schmidt-Hoberg, “A taste of dark matter: Flavour constraints on pseudoscalar mediators,” JHEP 03 (2015) 171, arXiv:1412.5174 [hep-ph]. [Erratum: JHEP 07, 103 (2015)].
- A. Berlin, S. Gori, T. Lin, and L.-T. Wang, “Pseudoscalar Portal Dark Matter,” Phys. Rev. D 92 (2015) 015005, arXiv:1502.06000 [hep-ph].
- J. Fan, S. M. Koushiappas, and G. Landsberg, “Pseudoscalar Portal Dark Matter and New Signatures of Vector-like Fermions,” JHEP 01 (2016) 111, arXiv:1507.06993 [hep-ph].
- J. M. No, “Looking through the pseudoscalar portal into dark matter: Novel mono-Higgs and mono-Z signatures at the LHC,” Phys. Rev. D 93 no. 3, (2016) 031701, arXiv:1509.01110 [hep-ph].
- M. Bauer, U. Haisch, and F. Kahlhoefer, “Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators,” JHEP 05 (2017) 138, arXiv:1701.07427 [hep-ph].
- S. Baek, P. Ko, and J. Li, “Minimal renormalizable simplified dark matter model with a pseudoscalar mediator,” Phys. Rev. D 95 no. 7, (2017) 075011, arXiv:1701.04131 [hep-ph].
- A. Kamada, H. Kim, and T. Sekiguchi, “Axionlike particle assisted strongly interacting massive particle,” Phys. Rev. D 96 no. 1, (2017) 016007, arXiv:1704.04505 [hep-ph].
- K. Kaneta, H.-S. Lee, and S. Yun, “Dark photon relic dark matter production through the dark axion portal,” Phys. Rev. D 95 no. 11, (2017) 115032, arXiv:1704.07542 [hep-ph].
- S. Banerjee, D. Barducci, G. Bélanger, B. Fuks, A. Goudelis, and B. Zaldivar, “Cornering pseudoscalar-mediated dark matter with the LHC and cosmology,” JHEP 07 (2017) 080, arXiv:1705.02327 [hep-ph].
- G. Arcadi, M. Lindner, F. S. Queiroz, W. Rodejohann, and S. Vogl, “Pseudoscalar Mediators: A WIMP model at the Neutrino Floor,” JCAP 03 (2018) 042, arXiv:1711.02110 [hep-ph].
- Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama, and K. Schutz, “Strongly interacting massive particles through the axion portal,” Phys. Rev. D 98 no. 11, (2018) 115031, arXiv:1806.10139 [hep-ph].
- A. Berlin, N. Blinov, G. Krnjaic, P. Schuster, and N. Toro, “Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX,” Phys. Rev. D 99 no. 7, (2019) 075001, arXiv:1807.01730 [hep-ph].
- P. deNiverville and H.-S. Lee, “Implications of the dark axion portal for SHiP and FASER and the advantages of monophoton signals,” Phys. Rev. D 100 no. 5, (2019) 055017, arXiv:1904.13061 [hep-ph].
- L. Darmé, F. Giacchino, E. Nardi, and M. Raggi, “Invisible decays of axion-like particles: constraints and prospects,” JHEP 06 (2021) 009, arXiv:2012.07894 [hep-ph].
- S.-F. Ge, X.-D. Ma, and P. Pasquini, “Probing the dark axion portal with muon anomalous magnetic moment,” Eur. Phys. J. C 81 no. 9, (2021) 787, arXiv:2104.03276 [hep-ph].
- S. Gola, S. Mandal, and N. Sinha, “ALP-portal majorana dark matter,” Int. J. Mod. Phys. A 37 no. 22, (2022) 2250131, arXiv:2106.00547 [hep-ph].
- V. Domcke, K. Schmitz, and T. You, “Cosmological relaxation through the dark axion portal,” JHEP 07 (2022) 126, arXiv:2108.11295 [hep-ph].
- A. S. Zhevlakov, D. V. Kirpichnikov, and V. E. Lyubovitskij, “Implication of the dark axion portal for the EDM of fermions and dark matter probing with NA64e, NA64μ𝜇\muitalic_μ, LDMX, M3, and BaBar,” Phys. Rev. D 106 no. 3, (2022) 035018, arXiv:2204.09978 [hep-ph].
- M. Bauer, G. Rostagni, and J. Spinner, “Axion-Higgs portal,” Phys. Rev. D 107 no. 1, (2023) 015007, arXiv:2207.05762 [hep-ph].
- A. Bharucha, F. Brümmer, N. Desai, and S. Mutzel, “Axion-like particles as mediators for dark matter: beyond freeze-out,” JHEP 02 (2023) 141, arXiv:2209.03932 [hep-ph].
- P. J. Fitzpatrick, Y. Hochberg, E. Kuflik, R. Ovadia, and Y. Soreq, “Dark Matter Through the Axion-Gluon Portal,” arXiv:2306.03128 [hep-ph].
- D. K. Ghosh, A. Ghoshal, and S. Jeesun, “Axion-like particle (ALP) portal freeze-in dark matter confronting ALP search experiments,” arXiv:2305.09188 [hep-ph].
- J. A. Dror, S. Gori, and P. Munbodh, “QCD Axion-Mediated Dark Matter,” arXiv:2306.03145 [hep-ph].
- F. Capozzi, B. Dutta, G. Gurung, W. Jang, I. M. Shoemaker, A. Thompson, and J. Yu, “New Constraints on ALP Electron and Photon Couplings from ArgoNeuT and the MiniBooNE Beam Dump,” arXiv:2307.03878 [hep-ph].
- D. S. M. Alves and N. Weiner, “A viable QCD axion in the MeV mass range,” JHEP 07 (2018) 092, arXiv:1710.03764 [hep-ph].
- D. S. M. Alves, “Signals of the QCD axion with mass of 17 MeV/c2superscript𝑐2c^{2}italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT: Nuclear transitions and light meson decays,” Phys. Rev. D 103 no. 5, (2021) 055018, arXiv:2009.05578 [hep-ph].
- M. Hostert and M. Pospelov, “Novel multilepton signatures of dark sectors in light meson decays,” Phys. Rev. D 105 no. 1, (2022) 015017, arXiv:2012.02142 [hep-ph].
- NA62 Collaboration, E. Cortina Gil et al., “Search for K+superscript𝐾K^{+}italic_K start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT decays into the π+e+e−e+e−superscript𝜋superscript𝑒superscript𝑒superscript𝑒superscript𝑒\pi^{+}e^{+}e^{-}e^{+}e^{-}italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT final state,” arXiv:2307.04579 [hep-ex].
- D. Buttazzo, P. Panci, D. Teresi, and R. Ziegler, “Xenon1T excess from electron recoils of non-relativistic Dark Matter,” Phys. Lett. B 817 (2021) 136310, arXiv:2011.08919 [hep-ph].
- XENON Collaboration, E. Aprile et al., “Excess electronic recoil events in XENON1T,” Phys. Rev. D 102 no. 7, (2020) 072004, arXiv:2006.09721 [hep-ex].
- XENON Collaboration, E. Aprile et al., “Search for New Physics in Electronic Recoil Data from XENONnT,” Phys. Rev. Lett. 129 no. 16, (2022) 161805, arXiv:2207.11330 [hep-ex].
- W. Altmannshofer, J. A. Dror, and S. Gori, “New Opportunities for Detecting Axion-Lepton Interactions,” Phys. Rev. Lett. 130 no. 24, (2023) 241801, arXiv:2209.00665 [hep-ph].
- M. A. Buen-Abad, J. Fan, M. Reece, and C. Sun, “Challenges for an axion explanation of the muon g−2𝑔2g-2italic_g - 2 measurement,” JHEP 09 (2021) 101, arXiv:2104.03267 [hep-ph].
- J. Liu, N. McGinnis, C. E. M. Wagner, and X.-P. Wang, “Challenges for a QCD Axion at the 10 MeV Scale,” JHEP 05 (2021) 138, arXiv:2102.10118 [hep-ph].
- C. Cornella, P. Paradisi, and O. Sumensari, “Hunting for ALPs with Lepton Flavor Violation,” JHEP 01 (2020) 158, arXiv:1911.06279 [hep-ph].
- M. Bauer, M. Neubert, and A. Thamm, “Collider Probes of Axion-Like Particles,” JHEP 12 (2017) 044, arXiv:1708.00443 [hep-ph].
- Muon g-2 Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 no. 14, (2021) 141801, arXiv:2104.03281 [hep-ex].
- T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1–166, arXiv:2006.04822 [hep-ph].
- chiQCD Collaboration, G. Wang, T. Draper, K.-F. Liu, and Y.-B. Yang, “Muon g-2 with overlap valence fermions,” Phys. Rev. D 107 no. 3, (2023) 034513, arXiv:2204.01280 [hep-lat].
- M. Cè et al., “Window observable for the hadronic vacuum polarization contribution to the muon g-2 from lattice QCD,” Phys. Rev. D 106 no. 11, (2022) 114502, arXiv:2206.06582 [hep-lat].
- Extended Twisted Mass Collaboration, C. Alexandrou et al., “Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions,” Phys. Rev. D 107 no. 7, (2023) 074506, arXiv:2206.15084 [hep-lat].
- Fermilab Lattice, HPQCD,, MILC Collaboration, A. Bazavov et al., “Light-quark connected intermediate-window contributions to the muon g-2 hadronic vacuum polarization from lattice QCD,” Phys. Rev. D 107 no. 11, (2023) 114514, arXiv:2301.08274 [hep-lat].
- T. Blum et al., “An update of Euclidean windows of the hadronic vacuum polarization,” arXiv:2301.08696 [hep-lat].
- CMD-3 Collaboration, F. V. Ignatov et al., “Measurement of the e+e−→π+π−→superscript𝑒superscript𝑒superscript𝜋superscript𝜋e^{+}e^{-}\to\pi^{+}\pi^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT cross section from threshold to 1.2 GeV with the CMD-3 detector,” arXiv:2302.08834 [hep-ex].
- G. Colangelo, A. X. El-Khadra, M. Hoferichter, A. Keshavarzi, C. Lehner, P. Stoffer, and T. Teubner, “Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization,” Phys. Lett. B 833 (2022) 137313, arXiv:2205.12963 [hep-ph].
- Muon g-2 Collaboration, D. P. Aguillard et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm,” arXiv:2308.06230 [hep-ex].
- H. Acaroğlu, M. Blanke, and M. Tabet, “Opening the Higgs Portal to Lepton-Flavoured Dark Matter,” arXiv:2309.10700 [hep-ph].
- G. Colangelo, M. Hoferichter, and P. Stoffer, “Puzzles in the hadronic contributions to the muon anomalous magnetic moment,” in 21st Conference on Flavor Physics and CP Violation. 8, 2023. arXiv:2308.04217 [hep-ph].
- The Muon g−2𝑔2g-2italic_g - 2 Theory Initiative, “The Status of Muon g−2𝑔2g-2italic_g - 2 Theory in the Standard Model.” 2023, https://muon-gm2-theory.illinois.edu/.
- G. F. Giudice, P. Paradisi, and M. Passera, “Testing new physics with the electron g-2,” JHEP 11 (2012) 113, arXiv:1208.6583 [hep-ph].
- R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, “Measurement of the fine-structure constant as a test of the Standard Model,” Science 360 (2018) 191, arXiv:1812.04130 [physics.atom-ph].
- L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, “Determination of the fine-structure constant with an accuracy of 81 parts per trillion,” Nature 588 no. 7836, (2020) 61–65.
- X. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse, “Measurement of the Electron Magnetic Moment,” Phys. Rev. Lett. 130 no. 7, (2023) 071801, arXiv:2209.13084 [physics.atom-ph].
- D. Chang, W.-F. Chang, C.-H. Chou, and W.-Y. Keung, “Large two loop contributions to g-2 from a generic pseudoscalar boson,” Phys. Rev. D 63 (2001) 091301, arXiv:hep-ph/0009292.
- NA64 Collaboration, D. Banerjee et al., “Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT pairs,” Phys. Rev. D 101 no. 7, (2020) 071101, arXiv:1912.11389 [hep-ex].
- NA64 Collaboration, Y. M. Andreev et al., “Search for pseudoscalar bosons decaying into e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT pairs in the NA64 experiment at the CERN SPS,” Phys. Rev. D 104 no. 11, (2021) L111102, arXiv:2104.13342 [hep-ex].
- J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, “New Fixed-Target Experiments to Search for Dark Gauge Forces,” Phys. Rev. D 80 (2009) 075018, arXiv:0906.0580 [hep-ph].
- E. M. Riordan et al., “A Search for Short Lived Axions in an Electron Beam Dump Experiment,” Phys. Rev. Lett. 59 (1987) 755.
- A. Konaka et al., “Search for Neutral Particles in Electron Beam Dump Experiment,” Phys. Rev. Lett. 57 (1986) 659.
- M. Davier, J. Jeanjean, and H. Nguyen Ngoc, “Search for Axions in Electron Bremsstrahlung,” Phys. Lett. B 180 (1986) 295–298.
- J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P. Rassmann, “Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump,” Phys. Rev. D 38 (1988) 3375.
- A. Anastasi et al., “Limit on the production of a low-mass vector boson in e+e−→Uγ→superscriptesuperscripteU𝛾\mathrm{e}^{+}\mathrm{e}^{-}\to\mathrm{U}\gammaroman_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → roman_U italic_γ, U→e+e−→Usuperscriptesuperscripte\mathrm{U}\to\mathrm{e}^{+}\mathrm{e}^{-}roman_U → roman_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT with the KLOE experiment,” Phys. Lett. B 750 (2015) 633–637, arXiv:1509.00740 [hep-ex].
- BaBar Collaboration, J. P. Lees et al., “Search for a Dark Photon in e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Collisions at BaBar,” Phys. Rev. Lett. 113 no. 20, (2014) 201801, arXiv:1406.2980 [hep-ex].
- J. Liu, Y. Luo, and M. Song, “Investigation of the concurrent effects of ALP-photon and ALP-electron couplings in Collider and Beam Dump Searches,” JHEP 09 (2023) 104, arXiv:2304.05435 [hep-ph].
- J. Jaeckel and M. Spannowsky, “Probing MeV to 90 GeV axion-like particles with LEP and LHC,” Phys. Lett. B 753 (2016) 482–487, arXiv:1509.00476 [hep-ph].
- SINDRUM Collaboration, R. Eichler et al., “Limits for Shortlived Neutral Particles Emitted μ+superscript𝜇\mu^{+}italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT or π+superscript𝜋\pi^{+}italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT Decay,” Phys. Lett. B 175 (1986) 101.
- L. Calibbi, D. Redigolo, R. Ziegler, and J. Zupan, “Looking forward to lepton-flavor-violating ALPs,” JHEP 09 (2021) 173, arXiv:2006.04795 [hep-ph].
- Y. Nir and N. Seiberg, “Should squarks be degenerate?,” Phys. Lett. B 309 (1993) 337–343, arXiv:hep-ph/9304307.
- G. Servant and T. M. P. Tait, “Is the lightest Kaluza-Klein particle a viable dark matter candidate?,” Nucl. Phys. B 650 (2003) 391–419, arXiv:hep-ph/0206071.
- Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].
- N. Padmanabhan and D. P. Finkbeiner, “Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects,” Phys. Rev. D 72 (2005) 023508, arXiv:astro-ph/0503486.
- M. Cirelli, F. Iocco, and P. Panci, “Constraints on Dark Matter annihilations from reionization and heating of the intergalactic gas,” JCAP 10 (2009) 009, arXiv:0907.0719 [astro-ph.CO].
- J. Chluba and R. A. Sunyaev, “The evolution of CMB spectral distortions in the early Universe,” Mon. Not. Roy. Astron. Soc. 419 (2012) 1294–1314, arXiv:1109.6552 [astro-ph.CO].
- T. R. Slatyer, “Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results,” Phys. Rev. D 93 no. 2, (2016) 023527, arXiv:1506.03811 [hep-ph].
- R. Essig, E. Kuflik, S. D. McDermott, T. Volansky, and K. M. Zurek, “Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations,” JHEP 11 (2013) 193, arXiv:1309.4091 [hep-ph].
- M. Cirelli, N. Fornengo, J. Koechler, E. Pinetti, and B. M. Roach, “Putting all the X in one basket: Updated X-ray constraints on sub-GeV Dark Matter,” JCAP 07 (2023) 026, arXiv:2303.08854 [hep-ph].
- Fermi-LAT Collaboration, M. Ackermann et al., “Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data,” Phys. Rev. Lett. 115 no. 23, (2015) 231301, arXiv:1503.02641 [astro-ph.HE].
- Hess, HAWC, VERITAS, MAGIC, H.E.S.S., Fermi-LAT Collaboration, H. Abdalla et al., “Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS,” PoS ICRC2021 (2021) 528, arXiv:2108.13646 [hep-ex].
- V. Lefranc, G. A. Mamon, and P. Panci, “Prospects for annihilating Dark Matter towards Milky Way’s dwarf galaxies by the Cherenkov Telescope Array,” JCAP 09 (2016) 021, arXiv:1605.02793 [astro-ph.HE].
- S. Ipek, D. McKeen, and A. E. Nelson, “A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation,” Phys. Rev. D 90 no. 5, (2014) 055021, arXiv:1404.3716 [hep-ph].
- LZ Collaboration, J. Aalbers et al., “First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment,” Phys. Rev. Lett. 131 no. 4, (2023) 041002, arXiv:2207.03764 [hep-ex].
- D. N. Spergel and P. J. Steinhardt, “Observational evidence for selfinteracting cold dark matter,” Phys. Rev. Lett. 84 (2000) 3760–3763, arXiv:astro-ph/9909386.
- S. Tulin, H.-B. Yu, and K. M. Zurek, “Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure,” Phys. Rev. D 87 no. 11, (2013) 115007, arXiv:1302.3898 [hep-ph].
- Flavour Lattice Averaging Group Collaboration, S. Aoki et al., “FLAG Review 2019: Flavour Lattice Averaging Group (FLAG),” Eur. Phys. J. C 80 no. 2, (2020) 113, arXiv:1902.08191 [hep-lat].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.