Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Sampling- and Gradient-based Planning for Contact-rich Manipulation (2310.04822v2)

Published 7 Oct 2023 in cs.RO

Abstract: Planning over discontinuous dynamics is needed for robotics tasks like contact-rich manipulation, which presents challenges in the numerical stability and speed of planning methods when either neural network or analytical models are used. On the one hand, sampling-based planners require higher sample complexity in high-dimensional problems and cannot describe safety constraints such as force limits. On the other hand, gradient-based solvers can suffer from local optima and convergence issues when the Hessian is poorly conditioned. We propose a planning method with both sampling- and gradient-based elements, using the Cross-entropy Method to initialize a gradient-based solver, providing better search over local minima and the ability to handle explicit constraints. We show the approach allows smooth, stable contact-rich planning for an impedance-controlled robot making contact with a stiff environment, benchmarking against gradient-only MPC and CEM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. M. Anitescu and F. A. Potra, “Formulating Dynamic Multi-rigid-body Contact Problems with Friction as Solvable Linear Complementarity Problems,” Nonlinear Dynamics, vol. 14, pp. 231–247, 1997.
  2. M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.
  3. S. Le Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop, M. Schwager, and Z. Manchester, “Fast contact-implicit model predictive control,” IEEE Transactions on Robotics, 2024.
  4. A. Aydinoglu and M. Posa, “Real-time multi-contact model predictive control via admm,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 3414–3421.
  5. W. Jin and M. Posa, “Task-driven hybrid model reduction for dexterous manipulation,” IEEE Transactions on Robotics, 2024.
  6. F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile manipulation with hybrid model predictive control,” The International Journal of Robotics Research, vol. 39, no. 7, pp. 755–773, Jun. 2020.
  7. C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg, “TrajectoTree: Trajectory Optimization Meets Tree Search for Planning Multi-contact Dexterous Manipulation,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2021, pp. 8262–8268.
  8. A. Wu, S. Sadraddini, and R. Tedrake, “R3T: Rapidly-exploring Random Reachable Set Tree for Optimal Kinodynamic Planning of Nonlinear Hybrid Systems,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), May 2020, pp. 4245–4251.
  9. T. Pang, H. T. Suh, L. Yang, and R. Tedrake, “Global planning for contact-rich manipulation via local smoothing of quasi-dynamic contact models,” IEEE Transactions on Robotics, 2023.
  10. H. Bharadhwaj, K. Xie, and F. Shkurti, “Model-predictive control via cross-entropy and gradient-based optimization,” in Learning for Dynamics and Control.   PMLR, 2020, pp. 277–286.
  11. K. Huang, S. Lale, U. Rosolia, Y. Shi, and A. Anandkumar, “CEM-GD: Cross-Entropy Method with Gradient Descent Planner for Model-Based Reinforcement Learning,” in arXiv.   arXiv, Dec. 2021, p. arXiv:2112.07746.
  12. H. J. T. Suh, T. Pang, and R. Tedrake, “Bundled gradients through contact via randomized smoothing,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4000–4007, 2022.
  13. A. Ö. Önol, R. Corcodel, P. Long, and T. Padır, “Tuning-Free Contact-Implicit Trajectory Optimization,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), May 2020, pp. 1183–1189.
  14. D. E. Stewart, “Rigid-Body Dynamics with Friction and Impact,” SIAM Review, vol. 42, no. 1, pp. 3–39, Jan. 2000.
  15. A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning,” CoRL, vol. abs/1708.02596, 2017.
  16. G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou, “Information theoretic MPC for model-based reinforcement learning,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, pp. 1714–1721.
  17. R. Y. Rubinstein, “Optimization of computer simulation models with rare events,” European Journal of Operational Research, vol. 99, no. 1, pp. 89–112, May 1997.
  18. M. Okada and T. Taniguchi, “Variational inference MPC for bayesian model-based reinforcement learning,” CoRL, vol. abs/1907.04202, 2019.
  19. C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek, and G. Martius, “Sample-efficient cross-entropy method for real-time planning,” in Conference on Robot Learning.   PMLR, 2021, pp. 1049–1065.
  20. L. Roveda, J. Maskani, P. Franceschi, A. Abdi, F. Braghin, L. M. Tosatti, and N. Pedrocchi, “Model-based reinforcement learning variable impedance control for human-robot collaboration,” Journal of Intelligent & Robotic Systems, pp. 1–17, 2020.
  21. K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learning in a handful of trials using probabilistic dynamics models,” Advances in neural information processing systems, vol. 31, 2018.
  22. B. Ichter, J. Harrison, and M. Pavone, “Learning Sampling Distributions for Robot Motion Planning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   Brisbane, QLD: IEEE, May 2018, pp. 7087–7094.
  23. A. M. Castro, F. N. Permenter, and X. Han, “An unconstrained convex formulation of compliant contact,” IEEE Transactions on Robotics, vol. 39, no. 2, pp. 1301–1320, 2022.
  24. K. Haninger, K. Samuel, F. Rozzi, S. Oh, and L. Roveda, “Differentiable Compliant Contact Primitives for Estimation and Model Predictive Control,” in ICRA 2024, To Be Presented, Oct. 2023.
  25. S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no. 3, pp. 52–57, 2002.
Citations (2)

Summary

We haven't generated a summary for this paper yet.