Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated high-index saddle dynamics method for searching high-index saddle points (2310.04656v2)

Published 7 Oct 2023 in math.NA and cs.NA

Abstract: The high-index saddle dynamics (HiSD) method [J. Yin, L. Zhang, and P. Zhang, {\it SIAM J. Sci. Comput., }41 (2019), pp.A3576-A3595] serves as an efficient tool for computing index-$k$ saddle points and constructing solution landscapes. Nevertheless, the conventional HiSD method often encounters slow convergence rates on ill-conditioned problems. To address this challenge, we propose an accelerated high-index saddle dynamics (A-HiSD) by incorporating the heavy ball method. We prove the linear stability theory of the continuous A-HiSD, and subsequently estimate the local convergence rate for the discrete A-HiSD. Our analysis demonstrates that the A-HiSD method exhibits a faster convergence rate compared to the conventional HiSD method, especially when dealing with ill-conditioned problems. We also perform various numerical experiments including the loss function of neural network to substantiate the effectiveness and acceleration of the A-HiSD method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.