Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mathematical and numerical analysis to shrinking-dimer saddle dynamics with local Lipschitz conditions (2207.09677v1)

Published 20 Jul 2022 in math.NA and cs.NA

Abstract: We present a mathematical and numerical investigation to the shrinkingdimer saddle dynamics for finding any-index saddle points in the solution landscape. Due to the dimer approximation of Hessian in saddle dynamics, the local Lipschitz assumptions and the strong nonlinearity for the saddle dynamics, it remains challenges for delicate analysis, such as the the boundedness of the solutions and the dimer error. We address these issues to bound the solutions under proper relaxation parameters, based on which we prove the error estimates for numerical discretization to the shrinking-dimer saddle dynamics by matching the dimer length and the time step size. Furthermore, the Richardson extrapolation is employed to obtain a high-order approximation. The inherent reason of requiring the matching of the dimer length and the time step size lies in that the former serves a different mesh size from the later, and thus the proposed numerical method is close to a fully-discrete numerical scheme of some spacetime PDE model with the Hessian in the saddle dynamics and its dimer approximation serving as a "spatial operator" and its discretization, respectively, which in turn indicates the PDE nature of the saddle dynamics.

Citations (5)

Summary

We haven't generated a summary for this paper yet.