Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Radical Sylvester-Gallai Theorem for Quadratics (2203.05532v1)

Published 10 Mar 2022 in cs.DM, cs.CC, cs.CG, and math.CO

Abstract: We prove a robust generalization of a Sylvester-Gallai type theorem for quadratic polynomials, generalizing the result in [S'20]. More precisely, given a parameter $0 < \delta \leq 1$ and a finite collection $\mathcal{F}$ of irreducible and pairwise independent polynomials of degree at most 2, we say that $\mathcal{F}$ is a $(\delta, 2)$-radical Sylvester-Gallai configuration if for any polynomial $F_i \in \mathcal{F}$, there exist $\delta(|\mathcal{F}| -1)$ polynomials $F_j$ such that $|\mathrm{rad}(F_i, F_j) \cap \mathcal{F}| \geq 3$, that is, the radical of $F_i, F_j$ contains a third polynomial in the set. In this work, we prove that any $(\delta, 2)$-radical Sylvester-Gallai configuration $\mathcal{F}$ must be of low dimension: that is $$\dim \mathrm{span}(\mathcal{F}) = \mathrm{poly}(1/\delta).$$

Citations (4)

Summary

We haven't generated a summary for this paper yet.