Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual inspection for illicit items in X-ray images using Deep Learning (2310.03658v2)

Published 5 Oct 2023 in cs.CV

Abstract: Automated detection of contraband items in X-ray images can significantly increase public safety, by enhancing the productivity and alleviating the mental load of security officers in airports, subways, customs/post offices, etc. The large volume and high throughput of passengers, mailed parcels, etc., during rush hours practically make it a Big Data problem. Modern computer vision algorithms relying on Deep Neural Networks (DNNs) have proven capable of undertaking this task even under resource-constrained and embedded execution scenarios, e.g., as is the case with fast, single-stage object detectors. However, no comparative experimental assessment of the various relevant DNN components/methods has been performed under a common evaluation protocol, which means that reliable cross-method comparisons are missing. This paper presents exactly such a comparative assessment, utilizing a public relevant dataset and a well-defined methodology for selecting the specific DNN components/modules that are being evaluated. The results indicate the superiority of Transformer detectors, the obsolete nature of auxiliary neural modules that have been developed in the past few years for security applications and the efficiency of the CSP-DarkNet backbone CNN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. G. Batsis, I. Mademlis, and G. T. Papadopoulos, “Illicit item detection in X-ray images for security applications,” in Proceedings of the IEEE International Conference on Big Data Computing Service and Applications (BigDataService), 2023.
  2. I. Mademlis, M. Mancuso, C. Paternoster, S. Evangelatos, E. Finlay, J. Hughes, P. Radoglou-Grammatikis, P. Sarigiannidis, G. Stavropoulos, K. Votis, and G. T. Papadopoulos, “The invisible arms race: digital trends in illicit goods trafficking and AI-enabled responses,” techRxiv preprint, 2023.
  3. D. Mery, D. Saavedra, and M. Prasad, “X-ray baggage inspection with computer vision: A survey,” IEEE Access, vol. 8, pp. 145 620–145 633, 2020.
  4. S. Akcay and T. Breckon, “Towards automatic threat detection: A survey of advances of deep learning within X-ray security imaging,” Pattern Recognition, vol. 122, p. 108245, 2022.
  5. S. Thermos, G. T. Papadopoulos, P. Daras, and G. Potamianos, “Deep affordance-grounded sensorimotor object recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  6. K. Gkountakos, A. Dimou, G. T. Papadopoulos, and P. Daras, “Incorporating textual similarity in video captioning schemes,” in Proceedings of the IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 2019.
  7. L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep learning for generic object detection: A survey,” International Journal of Computer Vision, vol. 128, pp. 261–318, 2020.
  8. I. Mademlis, C. Symeonidis, A. Tefas, and I. Pitas, “Vision-based drone control for autonomous UAV cinematography,” Multimedia Tools and Applications, pp. 1–29, 2023.
  9. M. Rafiei, J. Raitoharju, and A. Iosifidis, “Computer vision on X-ray data in industrial production and security applications: A comprehensive survey,” IEEE Access, vol. 11, pp. 2445–2477, 2023.
  10. J. Wu, X. Xu, and J. Yang, “Object detection and X-ray security imaging: A survey,” IEEE Access, 2023.
  11. C. Miao, L. Xie, F. Wan, C. Su, H. Liu, J. Jiao, and Q. Ye, “SIXray: A large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  12. S. Akçay, M. E. Kundegorski, M. Devereux, and T. P. Breckon, “Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery,” in Proceedings of the IEEE International Conference on Image Processing (ICIP), 2016.
  13. Y. F. A. Gaus, N. Bhowmik, S. Akcay, and T. Breckon, “Evaluating the transferability and adversarial discrimination of convolutional neural networks for threat object detection and classification within X-ray security imagery,” in Proceedings of the IEEE International Conference On Machine Learning And Applications (ICMLA), 2019.
  14. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2015.
  15. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.
  16. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.
  17. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single-shot multibox detector,” in Proceedings of the European Conference on Computer Vision (ECCV).   Springer, 2016.
  18. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  19. T. Hassan, S. Akcay, M. Bennamoun, S. Khan, and N. Werghi, “Cascaded structure tensor framework for robust identification of heavily occluded baggage items from X-ray scans,” arXiv preprint arXiv:2004.06780, 2020.
  20. Y. Ren, H. Zhang, H. Sun, G. Ma, J. Ren, and J. Yang, “LightRay: Lightweight network for prohibited items detection in X-ray images during security inspection,” Computers and Electrical Engineering, vol. 103, p. 108283, 2022.
  21. A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for MobileNetV3,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
  22. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  23. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block attention module,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018.
  24. F. Shao, J. Liu, P. Wu, Z. Yang, and Z. Wu, “Exploiting foreground and background separation for prohibited item detection in overlapping X-ray images,” Pattern Recognition, vol. 122, p. 108261, 2022.
  25. B. Song, R. Li, X. Pan, X. Liu, and Y. Xu, “Improved YOLOv5 detection algorithm of contraband in x-ray security inspection image,” in Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence (PRAI).   IEEE, 2022.
  26. R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection system on mobile devices,” Proceedings of Advances in Neural Information Processing Systems (NIPS), 2018.
  27. K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More features from cheap operations,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  28. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Proceedings of the European Conference on Computer Vision (ECCV).   Springer, 2014.
  29. A. J. Shepley, G. Falzon, P. Kwan, and L. Brankovic, “Confluence: A robust non-IoU alternative to non-maxima suppression in object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  30. C. Symeonidis, I. Mademlis, I. Pitas, and N. Nikolaidis, “Neural attention-driven Non-Maximum Suppression for person detection,” IEEE Transactions on Image Processing, vol. 32, pp. 2454–2467, 2023.
  31. G. Jocher, “YOLOv5 by Ultralytics.” [Online]. Available: https://github.com/ultralytics/yolov5
  32. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal speed and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.
  33. M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for Convolutional Neural Networks,” in Proceedings of the International Conference on Machine Learning (ICML).   PMLR, 2019.
  34. Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-stage object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
  35. G. Jocher, “YOLOv8 by Ultralytics.” [Online]. Available: https://github.com/ultralytics/ultralytics
  36. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in Proceedings of the European Conference on Computer Vision (ECCV).   Springer, 2020.
  37. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2017.
  38. H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and H.-Y. Shum, “DINO: DETR with improved denoising anchor boxes for end-to-end object detection,” arXiv preprint arXiv:2203.03605, 2022.
  39. R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
  40. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  41. J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
  42. C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, “CSPNet: A new backbone that can enhance learning capability of CNN,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020.
  43. K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.
  44. S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
  45. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
  46. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.
  47. M. Tan and Q. Le, “EfficientNetV2: Smaller models and faster training,” in Proceedings of the International Conference on Machine Learning (ICML).   PMLR, 2021.
  48. Y. Wei, R. Tao, Z. Wu, Y. Ma, L. Zhang, and X. Liu, “Occluded prohibited items detection: An X-ray security inspection benchmark and de-occlusion attention module,” in Proceedings of the ACM International Conference on Multimedia (ACM MM), 2020.
  49. R. Tao, Y. Wei, X. Jiang, H. Li, H. Qin, J. Wang, Y. Ma, L. Zhang, and X. Liu, “Towards real-world X-ray security inspection: A high-quality benchmark and lateral inhibition module for prohibited items detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
  50. B. Ma, T. Jia, M. Su, X. Jia, D. Chen, and Y. Zhang, “Automated segmentation of prohibited items in x-ray baggage images using dense de-overlap attention snake,” IEEE Transactions on Multimedia, 2022.
  51. C. Ma, L. Zhuo, J. Li, Y. Zhang, and J. Zhang, “Occluded prohibited object detection in X-ray images with global context-aware multi-scale feature aggregation,” Neurocomputing, vol. 519, pp. 1–16, 2023.
  52. H. D. Nguyen, R. Cai, H. Zhao, A. C. Kot, and B. Wen, “Towards more efficient security inspection via deep learning: A task-driven X-ray image cropping scheme,” Micromachines, vol. 13, no. 4, p. 565, 2022.
  53. B. K. Isaac-Medina, S. Yucer, N. Bhowmik, and T. P. Breckon, “Seeing through the data: A statistical evaluation of prohibited item detection benchmark datasets for X-ray security screening,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.