Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contraband Materials Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery (2012.11753v1)

Published 21 Dec 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Automatic prohibited object detection within 2D/3D X-ray Computed Tomography (CT) has been studied in literature to enhance the aviation security screening at checkpoints. Deep Convolutional Neural Networks (CNN) have demonstrated superior performance in 2D X-ray imagery. However, there exists very limited proof of how deep neural networks perform in materials detection within volumetric 3D CT baggage screening imagery. We attempt to close this gap by applying Deep Neural Networks in 3D contraband substance detection based on their material signatures. Specifically, we formulate it as a 3D semantic segmentation problem to identify material types for all voxels based on which contraband materials can be detected. To this end, we firstly investigate 3D CNN based semantic segmentation algorithms such as 3D U-Net and its variants. In contrast to the original dense representation form of volumetric 3D CT data, we propose to convert the CT volumes into sparse point clouds which allows the use of point cloud processing approaches such as PointNet++ towards more efficient processing. Experimental results on a publicly available dataset (NEU ATR) demonstrate the effectiveness of both 3D U-Net and PointNet++ in materials detection in 3D CT imagery for baggage security screening.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Qian Wang (453 papers)
  2. Toby P. Breckon (73 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.