Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TPDR: A Novel Two-Step Transformer-based Product and Class Description Match and Retrieval Method (2310.03491v1)

Published 5 Oct 2023 in cs.IR, cs.LG, and cs.SE

Abstract: There is a niche of companies responsible for intermediating the purchase of large batches of varied products for other companies, for which the main challenge is to perform product description standardization, i.e., matching an item described by a client with a product described in a catalog. The problem is complex since the client's product description may be: (1) potentially noisy; (2) short and uninformative (e.g., missing information about model and size); and (3) cross-language. In this paper, we formalize this problem as a ranking task: given an initial client product specification (query), return the most appropriate standardized descriptions (response). In this paper, we propose TPDR, a two-step Transformer-based Product and Class Description Retrieval method that is able to explore the semantic correspondence between IS and SD, by exploiting attention mechanisms and contrastive learning. First, TPDR employs the transformers as two encoders sharing the embedding vector space: one for encoding the IS and another for the SD, in which corresponding pairs (IS, SD) must be close in the vector space. Closeness is further enforced by a contrastive learning mechanism leveraging a specialized loss function. TPDR also exploits a (second) re-ranking step based on syntactic features that are very important for the exact matching (model, dimension) of certain products that may have been neglected by the transformers. To evaluate our proposal, we consider 11 datasets from a real company, covering different application contexts. Our solution was able to retrieve the correct standardized product before the 5th ranking position in 71% of the cases and its correct category in the first position in 80% of the situations. Moreover, the effectiveness gains over purely syntactic or semantic baselines reach up to 3.7 times, solving cases that none of the approaches in isolation can do by themselves.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Washington Cunha (7 papers)
  2. Celso França (2 papers)
  3. Leonardo Rocha (7 papers)
  4. Marcos André Gonçalves (11 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com