Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Block Term Decomposition for the Modelling of Higher-Order Arrays (2310.02694v1)

Published 4 Oct 2023 in stat.ML, cs.LG, and stat.AP

Abstract: Tensors are ubiquitous in science and engineering and tensor factorization approaches have become important tools for the characterization of higher order structure. Factorizations includes the outer-product rank Canonical Polyadic Decomposition (CPD) as well as the multi-linear rank Tucker decomposition in which the Block-Term Decomposition (BTD) is a structured intermediate interpolating between these two representations. Whereas CPD, Tucker, and BTD have traditionally relied on maximum-likelihood estimation, Bayesian inference has been use to form probabilistic CPD and Tucker. We propose, an efficient variational Bayesian probabilistic BTD, which uses the von-Mises Fisher matrix distribution to impose orthogonality in the multi-linear Tucker parts forming the BTD. On synthetic and two real datasets, we highlight the Bayesian inference procedure and demonstrate using the proposed pBTD on noisy data and for model order quantification. We find that the probabilistic BTD can quantify suitable multi-linear structures providing a means for robust inference of patterns in multi-linear data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.