Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Faster Deterministic Approximation Algorithm for TTP-2 (2310.02592v3)

Published 4 Oct 2023 in cs.DS and math.CO

Abstract: The traveling tournament problem (TTP) is to minimize the total traveling distance of all teams in a double round-robin tournament. In this paper, we focus on TTP-2, in which each team plays at most two consecutive home games and at most two consecutive away games. For the case where the number of teams $n\equiv2$ (mod 4), Zhao and Xiao (2022) presented a $(1+5/n)$-approximation algorithm. This is a randomized algorithm running in $O(n3)$ time, and its derandomized version runs in $O(n4)$ time. In this paper, we present a faster deterministic algorithm running in $O(n3)$ time, with approximation ratio $1+9/n$. This ratio improves the previous approximation ratios of the deterministic algorithms with the same time complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. R. T. Campbell and D. Chen. A minimum distance basketball scheduling problem. Management Science in Sports, 4:15–26, 1976.
  2. D. Chatterjee and B. K. Roy. An improved scheduling algorithm for traveling tournament problem with maximum trip length two. arXiv:2109.09065, 2021.
  3. D. de Werra. Some models of graphs for scheduling sports competitions. Discrete Appl. Math., 21(1):47–65, 1988.
  4. The traveling tournament problem description and benchmarks. In 7th CP, pages 580–584. Springer, 2001.
  5. H. N. Gabow. Implementation of Algorithms for Maximum Matching on Nonbipartite Graphs. PhD thesis, Department of Computer Science, Stanford University, Stanford, California, 1973.
  6. Faster scaling algorithms for general graph matching problems. J. ACM, 38(4):815–853, 1991.
  7. S. Imahori. A 1+ O⁢(1/n)O1𝑛\mathrm{O}(1/n)roman_O ( 1 / italic_n ) approximation algorithm for TTPTTP\mathrm{TTP}roman_TTP (2). arXiv:2108.08444, 2021.
  8. A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Ann. Oper. Res., 218(1):237–247, 2014.
  9. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York, 1976.
  10. An approximation algorithm for the traveling tournament problem. Ann. Oper. Res., 194:317–324, 2012.
  11. C. Thielen and S. Westphal. Complexity of the traveling tournament problem. Theor. Comput. Sci., 412(4-5):345–351, 2011.
  12. C. Thielen and S. Westphal. Approximation algorithms for TTPTTP\mathrm{TTP}roman_TTP (2). Math. Methods Oper. Res., 76:1–20, 2012.
  13. M. Xiao and S. Kou. An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In 41st MFCS, LIPIcs, volume 58, pages 89:1–89:14, 2016.
  14. An improved approximation algorithm for the traveling tournament problem. Algorithmica, 61(4):1077–1091, 2011.
  15. J. Zhao and M. Xiao. A further improvement on approximating TTPTTP\mathrm{TTP}roman_TTP-2. In 27th COCOON, LNCS, volume 13025, pages 137–149. Springer, 2021.
  16. J. Zhao and M. Xiao. The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In 30th IJCAI, pages 4206–4212, 2021.
  17. J. Zhao and M. Xiao. Practical algorithms with guaranteed approximation ratio for TTPTTP\mathrm{TTP}roman_TTP with maximum tour length two. arXiv:2212.12240, 2022.
  18. J. Zhao and M. Xiao. A 5555-approximation algorithm for the traveling tournament problem. arXiv:2309.01902, 2023.
  19. Improved approximation algorithms for the traveling tournament problem. In 47th MFCS, LIPIcs, volume 241, pages 83:1–83:15, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.