The Traveling Tournament Problem: Improved Algorithms Based on Cycle Packing (2404.10955v1)
Abstract: The Traveling Tournament Problem (TTP) is a well-known benchmark problem in the field of tournament timetabling, which asks us to design a double round-robin schedule such that each pair of teams plays one game in each other's home venue, minimizing the total distance traveled by all $n$ teams ($n$ is even). TTP-$k$ is the problem with one more constraint that each team can have at most $k$-consecutive home games or away games. In this paper, we investigate schedules for TTP-$k$ and analyze the approximation ratio of the solutions. Most previous schedules were constructed based on a Hamiltonian cycle of the graph. We will propose a novel construction based on a $k$-cycle packing. Then, combining our $k$-cycle packing schedule with the Hamiltonian cycle schedule, we obtain improved approximation ratios for TTP-$k$ with deep analysis. The case where $k=3$, TTP-3, is one of the most investigated cases. We improve the approximation ratio of TTP-3 from $(1.667+\varepsilon)$ to $(1.598+\varepsilon)$, for any $\varepsilon>0$. For TTP-$4$, we improve the approximation ratio from $(1.750+\varepsilon)$ to $(1.700+\varepsilon)$. By a refined analysis of the Hamiltonian cycle construction, we also improve the approximation ratio of TTP-$k$ from $(\frac{5k-7}{2k}+\varepsilon)$ to $(\frac{5k2-4k+3}{2k(k+1)}+\varepsilon)$ for any constant $k\geq 5$. Our methods can be extended to solve a variant called LDTTP-$k$ (TTP-$k$ where all teams are allocated on a straight line). We show that the $k$-cycle packing construction can achieve an approximation ratio of $(\frac{3k-3}{2k-1}+\varepsilon)$, which improves the approximation ratio of LDTTP-3 from $4/3$ to $(6/5+\varepsilon)$.
- Bhattacharyya, R.: Complexity of the unconstrained traveling tournament problem. Operations Research Letters 44(5), 649–654 (2016) Thielen and Westphal [2011] Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. Theoretical Computer Science 412(4), 345–351 (2011) Chatterjee [2021] Chatterjee, D.: Complexity of traveling tournament problem with trip length more than three. CoRR abs/2110.02300 (2021) 2110.02300 Thielen and Westphal [2012] Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. Theoretical Computer Science 412(4), 345–351 (2011) Chatterjee [2021] Chatterjee, D.: Complexity of traveling tournament problem with trip length more than three. CoRR abs/2110.02300 (2021) 2110.02300 Thielen and Westphal [2012] Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D.: Complexity of traveling tournament problem with trip length more than three. CoRR abs/2110.02300 (2021) 2110.02300 Thielen and Westphal [2012] Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. Theoretical Computer Science 412(4), 345–351 (2011) Chatterjee [2021] Chatterjee, D.: Complexity of traveling tournament problem with trip length more than three. CoRR abs/2110.02300 (2021) 2110.02300 Thielen and Westphal [2012] Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D.: Complexity of traveling tournament problem with trip length more than three. CoRR abs/2110.02300 (2021) 2110.02300 Thielen and Westphal [2012] Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Chatterjee, D.: Complexity of traveling tournament problem with trip length more than three. CoRR abs/2110.02300 (2021) 2110.02300 Thielen and Westphal [2012] Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Thielen, C., Westphal, S.: Approximation algorithms for TTP(2). Mathematical Methods of Operations Research 76(1), 1–20 (2012) Xiao and Kou [2016] Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Xiao, M., Kou, S.: An improved approximation algorithm for the traveling tournament problem with maximum trip length two. In: MFCS 2016, vol. 58, pp. 89–18914 (2016) Zhao and Xiao [2021a] Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Zhao, J., Xiao, M.: The traveling tournament problem with maximum tour length two: A practical algorithm with an improved approximation bound. In: IJCAI 2021, pp. 4206–4212 (2021) Zhao and Xiao [2021b] Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Zhao, J., Xiao, M.: A further improvement on approximating TTP-2. In: COCOON 2021. Lecture Notes in Computer Science, vol. 13025, pp. 137–149 (2021) Chatterjee and Roy [2021] Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Chatterjee, D., Roy, B.K.: An improved scheduling algorithm for traveling tournament problem with maximum trip length two. In: ATMOS 2021, vol. 96, pp. 16–11615 (2021) Miyashiro et al. [2012] Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. Annals of Operations Research 194(1), 317–324 (2012) Yamaguchi et al. [2011] Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. Algorithmica 61(4), 1077–1091 (2011) Imahori et al. [2014] Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Annals of Operations Research 218(1), 237–247 (2014) Westphal and Noparlik [2014] Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Annals of Operations Research 218(1), 347–360 (2014) Hoshino and Kawarabayashi [2013] Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Hoshino, R., Kawarabayashi, K.-i.: An approximation algorithm for the bipartite traveling tournament problem. Mathematics of Operations Research 38(4), 720–728 (2013) Imahori [2021] Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Imahori, S.: A 1+O(1/N) approximation algorithm for TTP(2). CoRR abs/2108.08444 (2021) 2108.08444 Easton et al. [2003] Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: a combined integer programming and constraint programming approach. In: 4th International Conference of Practice and Theory of Automated Timetabling IV, pp. 100–109 (2003) Lim et al. [2006] Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational Research 174(3), 1459–1478 (2006) Anagnostopoulos et al. [2006] Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. Journal of Scheduling 9(2), 177–193 (2006) Di Gaspero and Schaerf [2007] Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007) Goerigk et al. [2014] Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Goerigk, M., Hoshino, R., Kawarabayashi, K., Westphal, S.: Solving the traveling tournament problem by packing three-vertex paths. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2271–2277 (2014) Goerigk and Westphal [2016] Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Goerigk, M., Westphal, S.: A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239(1), 343–354 (2016) Trick [2022] Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Trick, M.: Challenge traveling tournament instances. Accessed: 2022-4-01 (2022) Bulck et al. [2020] Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Bulck, D.V., Goossens, D.R., Schönberger, J., Guajardo, M.: Robinx: A three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280(2), 568–580 (2020) Karlin et al. [2021] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. In: STOC 2021, pp. 32–45 (2021) Christofides [1976] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group (1976) Serdyukov [1978] Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Serdyukov, A.I.: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17, 76–79 (1978) Hoshino and Kawarabayashi [2012] Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Hoshino, R., Kawarabayashi, K.: Generating approximate solutions to the TTP using a linear distance relaxation. J. Artif. Intell. Res. 45, 257–286 (2012) Zhao et al. [2022] Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Zhao, J., Xiao, M., Xu, C.: Improved approximation algorithms for the traveling tournament problem. In: MFCS 2022,. LIPIcs, vol. 241, pp. 83–18315 (2022) Campbell and Chen [1976] Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Campbell, R.T., Chen, D.-S.: A minimum distance basketball scheduling problem. Management science in sports 4, 15–26 (1976) Asano et al. [1996] Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research Report RT0162 (1996) Kirkman [1847] Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Kirkman, T.P.: On a problem in combinations. Cambridge and Dublin Mathematical Journal 2, 191–204 (1847) De Werra [1981] De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- De Werra, D.: Scheduling in sports. Studies on graphs and discrete programming 11, 381–395 (1981) Motwani and Raghavan [1995] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) Goemans and Williamson [1995] Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995) Monnot and Toulouse [2008] Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008) Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
- Monnot, J., Toulouse, S.: Approximation results for the weighted p44{}_{\mbox{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)