Papers
Topics
Authors
Recent
Search
2000 character limit reached

Machine Learning-Enabled Precision Position Control and Thermal Regulation in Advanced Thermal Actuators

Published 4 Oct 2023 in cs.RO and cs.LG | (2310.02583v1)

Abstract: With their unique combination of characteristics - an energy density almost 100 times that of human muscle, and a power density of 5.3 kW/kg, similar to a jet engine's output - Nylon artificial muscles stand out as particularly apt for robotics applications. However, the necessity of integrating sensors and controllers poses a limitation to their practical usage. Here we report a constant power open-loop controller based on machine learning. We show that we can control the position of a nylon artificial muscle without external sensors. To this end, we construct a mapping from a desired displacement trajectory to a required power using an ensemble encoder-style feed-forward neural network. The neural controller is carefully trained on a physics-based denoised dataset and can be fine-tuned to accommodate various types of thermal artificial muscles, irrespective of the presence or absence of hysteresis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.