Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Collision Detection for Robots with Variable Stiffness Actuation by Using MAD-CNN: Modularized-Attention-Dilated Convolutional Neural Network (2310.02573v3)

Published 4 Oct 2023 in cs.RO and cs.HC

Abstract: Ensuring safety is paramount in the field of collaborative robotics to mitigate the risks of human injury and environmental damage. Apart from collision avoidance, it is crucial for robots to rapidly detect and respond to unexpected collisions. While several learning-based collision detection methods have been introduced as alternatives to purely model-based detection techniques, there is currently a lack of such methods designed for collaborative robots equipped with variable stiffness actuators. Moreover, there is potential for further enhancing the network's robustness and improving the efficiency of data training. In this paper, we propose a new network, the Modularized Attention-Dilated Convolutional Neural Network (MAD-CNN), for collision detection in robots equipped with variable stiffness actuators. Our model incorporates a dual inductive bias mechanism and an attention module to enhance data efficiency and improve robustness. In particular, MAD-CNN is trained using only a four-minute collision dataset focusing on the highest level of joint stiffness. Despite limited training data, MAD-CNN robustly detects all collisions with minimal detection delay across various stiffness conditions. Moreover, it exhibits a higher level of collision sensitivity, which is beneficial for effectively handling false positives, which is a common issue in learning-based methods. Experimental results demonstrate that the proposed MAD-CNN model outperforms existing state-of-the-art models in terms of collision sensitivity and robustness.

Summary

We haven't generated a summary for this paper yet.