Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CEASE: Collision-Evaluation-based Active Sense System for Collaborative Robotic Arms (2403.05761v1)

Published 9 Mar 2024 in cs.RO

Abstract: Collision detection via visual fences can significantly enhance the safety of collaborative robotic arms. Existing work typically performs such detection based on pre-deployed stationary cameras outside the robotic arm's workspace. These stationary cameras can only provide a restricted detection range and constrain the mobility of the robotic system. To cope with this issue, we propose an active sense method enabling a wide range of collision risk evaluation in dynamic scenarios. First, an active vision mechanism is implemented by equipping cameras with additional degrees of rotation. Considering the uncertainty in the active sense, we design a state confidence envelope to uniformly characterize both known and potential dynamic obstacles. Subsequently, using the observation-based uncertainty evolution, collision risk is evaluated by the prediction of obstacle envelopes. On this basis, a Markov decision process was employed to search for an optimal observation sequence of the active sense system, which enlarges the field of observation and reduces uncertainties in the state estimation of surrounding obstacles. Simulation and real-world experiments consistently demonstrate a 168% increase in the observation time coverage of typical dynamic humanoid obstacles compared to the method using stationary cameras, which underscores our system's effectiveness in collision risk tracking and enhancing the safety of robotic arms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. F. Vicentini, “Collaborative robotics: a survey,” Journal of Mechanical Design, vol. 143, no. 4, p. 040802, 2021.
  2. G. Chiriatti, G. Palmieri, C. Scoccia, M. C. Palpacelli, and M. Callegari, “Adaptive obstacle avoidance for a class of collaborative robots,” Machines, vol. 9, no. 6, p. 113, 2021.
  3. K.-T. Song, Y.-H. Chang, and J.-H. Chen, “3d vision for object grasp and obstacle avoidance of a collaborative robot,” in 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2019, pp. 254–258.
  4. D. Gandhi and E. Cervera, “Sensor covering of a robot arm for collision avoidance,” in SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483), vol. 5, 2003, pp. 4951–4955 vol.5.
  5. J. Vachálek, L. Čapucha, P. Krasňanský, and F. Tóth, “Collision-free manipulation of a robotic arm using the ms windows kinect 3d optical system,” in 2015 20th International Conference on Process Control (PC), 2015, pp. 96–106.
  6. C.-A. Yang and K.-T. Song, “Control design for robotic human-following and obstacle avoidance using an rgb-d camera,” in 2019 19th International Conference on Control, Automation and Systems (ICCAS), 2019, pp. 934–939.
  7. D. Han, H. Nie, J. Chen, and M. Chen, “Dynamic obstacle avoidance for manipulators using distance calculation and discrete detection,” Robotics and computer-integrated manufacturing, vol. 49, pp. 98–104, 2018.
  8. M. Melchiorre, L. S. Scimmi, S. P. Pastorelli, and S. Mauro, “Collison avoidance using point cloud data fusion from multiple depth sensors: a practical approach,” in 2019 23rd International Conference on Mechatronics Technology (ICMT).   IEEE, 2019, pp. 1–6.
  9. C.-A. Yang and K.-T. Song, “Control design for robotic human-following and obstacle avoidance using an rgb-d camera,” in 2019 19th International Conference on Control, Automation and Systems (ICCAS).   IEEE, 2019, pp. 934–939.
  10. S. Older and G. Grayson, “Perception and decision in the pedestrian task,” Tech. Rep., 1974.
  11. S. E. Hassan, D. R. Geruschat, and K. A. Turano, “Head movements while crossing streets: effect of vision impairment,” Optometry and vision science, vol. 82, no. 1, pp. 18–26, 2005.
  12. X. Zhuang and C. Wu, “The safety margin and perceived safety of pedestrians at unmarked roadway,” Transportation research part F: traffic psychology and behaviour, vol. 15, no. 2, pp. 119–131, 2012.
  13. M. Safeea, P. Neto, and R. Bearee, “On-line collision avoidance for collaborative robot manipulators by adjusting off-line generated paths: An industrial use case,” Robotics and Autonomous Systems, vol. 119, pp. 278–288, 2019.
  14. W. Ge, H. Chen, H. Ma, L. Li, M. Bai, X. Ding, and K. Xu, “A dynamic obstacle avoidance method for collaborative robots based on trajectory optimization,” Cobot, vol. 2, p. 6, 2023.
  15. S. Mehta and T. Burks, “Vision-based control of robotic manipulator for citrus harvesting,” Computers and electronics in agriculture, vol. 102, pp. 146–158, 2014.
  16. S. Morikawa, T. Senoo, A. Namiki, and M. Ishikawa, “Realtime collision avoidance using a robot manipulator with light-weight small high-speed vision systems,” in Proceedings 2007 IEEE International Conference on Robotics and Automation.   IEEE, 2007, pp. 794–799.
  17. A. Shahzad, X. Gao, A. Yasin, K. Javed, and S. M. Anwar, “A vision-based path planning and object tracking framework for 6-dof robotic manipulator,” IEEE Access, vol. 8, pp. 203 158–203 167, 2020.
  18. M. H. Ali, K. Aizat, K. Yerkhan, T. Zhandos, and O. Anuar, “Vision-based robot manipulator for industrial applications,” Procedia computer science, vol. 133, pp. 205–212, 2018.
  19. H. M. Balanji, A. E. Turgut, and L. T. Tunc, “A novel vision-based calibration framework for industrial robotic manipulators,” Robotics and Computer-Integrated Manufacturing, vol. 73, p. 102248, 2022.
  20. L. S. Scimmi, M. Melchiorre, S. Mauro, and S. Pastorelli, “Multiple collision avoidance between human limbs and robot links algorithm in collaborative tasks.” in ICINCO (2), 2018, pp. 301–308.
  21. C. Connolly, “The determination of next best views,” in Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, 1985, pp. 432–435.
  22. A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon" next-best-view" planner for 3d exploration,” in 2016 IEEE international conference on robotics and automation (ICRA).   IEEE, 2016, pp. 1462–1468.
  23. B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.
  24. J. I. Vasquez-Gomez, L. E. Sucar, R. Murrieta-Cid, and E. Lopez-Damian, “Volumetric next-best-view planning for 3d object reconstruction with positioning error,” International Journal of Advanced Robotic Systems, vol. 11, no. 10, p. 159, 2014.
  25. N. Pan, R. Zhang, T. Yang, C. Cui, C. Xu, and F. Gao, “Fast-tracker 2.0: Improving autonomy of aerial tracking with active vision and human location regression,” IET Cyber-Systems and Robotics, vol. 3, no. 4, pp. 292–301, 2021.
  26. G. Chen, W. Dong, X. Sheng, X. Zhu, and H. Ding, “An active sense and avoid system for flying robots in dynamic environments,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 2, pp. 668–678, 2021.
  27. M. T. Spaan, T. S. Veiga, and P. U. Lima, “Decision-theoretic planning under uncertainty with information rewards for active cooperative perception,” Autonomous Agents and Multi-Agent Systems, vol. 29, pp. 1157–1185, 2015.
  28. T. Van de Maele, T. Verbelen, O. Çatal, C. De Boom, and B. Dhoedt, “Active vision for robot manipulators using the free energy principle,” Frontiers in neurorobotics, vol. 15, p. 642780, 2021.
  29. M. Hauskrecht, “Value-function approximations for partially observable markov decision processes,” Journal of artificial intelligence research, vol. 13, pp. 33–94, 2000.
  30. J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for collision and proximity queries,” in 2012 IEEE International Conference on Robotics and Automation.   IEEE, 2012, pp. 3859–3866.
  31. X. Zang, W. Yu, L. Zhang, and S. Iqbal, “Path planning based on bi-rrt algorithm for redundant manipulator,” in 2015 International Conference on Electrical, Automation and Mechanical Engineering.   Atlantis Press, 2015, pp. 189–191.
Citations (1)

Summary

We haven't generated a summary for this paper yet.