Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Interpretable Deep Disentangled Neural Networks for Hyperspectral Unmixing (2310.02340v1)

Published 3 Oct 2023 in eess.IV and cs.AI

Abstract: Although considerable effort has been dedicated to improving the solution to the hyperspectral unmixing problem, non-idealities such as complex radiation scattering and endmember variability negatively impact the performance of most existing algorithms and can be very challenging to address. Recently, deep learning-based frameworks have been explored for hyperspectral umixing due to their flexibility and powerful representation capabilities. However, such techniques either do not address the non-idealities of the unmixing problem, or rely on black-box models which are not interpretable. In this paper, we propose a new interpretable deep learning method for hyperspectral unmixing that accounts for nonlinearity and endmember variability. The proposed method leverages a probabilistic variational deep-learning framework, where disentanglement learning is employed to properly separate the abundances and endmembers. The model is learned end-to-end using stochastic backpropagation, and trained using a self-supervised strategy which leverages benefits from semi-supervised learning techniques. Furthermore, the model is carefully designed to provide a high degree of interpretability. This includes modeling the abundances as a Dirichlet distribution, the endmembers using low-dimensional deep latent variable representations, and using two-stream neural networks composed of additive piecewise-linear/nonlinear components. Experimental results on synthetic and real datasets illustrate the performance of the proposed method compared to state-of-the-art algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (105)
  1. R. A. Borsoi, T. Imbiriba, and D. Erdoğmuş, “A deep disentangled approach for interpretable hyperspectral unmixing,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2023.
  2. J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Geoscience and Remote Sensing Magazine, vol. 1, no. 2, pp. 6–36, 2013.
  3. N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 44–57, 2002.
  4. N. Dobigeon, J.-Y. Tourneret, C. Richard, J. C. M. Bermudez, S. McLaughlin, and A. O. Hero, “Nonlinear unmixing of hyperspectral images: Models and algorithms,” IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 82–94, Jan 2014.
  5. R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, C. Richard, J. Chanussot, L. Drumetz, J.-Y. Tourneret, A. Zare, and C. Jutten, “Spectral variability in hyperspectral data unmixing: A comprehensive review,” IEEE Geoscience and Remote Sensing Magazine, vol. 9, pp. 223–270, 2021.
  6. J. S. Bhatt and M. V. Joshi, “Deep learning in hyperspectral unmixing: A review,” in Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS).   IEEE, 2020, pp. 2189–2192.
  7. B. Palsson, J. R. Sveinsson, and M. O. Ulfarsson, “Blind hyperspectral unmixing using autoencoders: A critical comparison,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 1340–1372, 2022.
  8. D. Hong, W. He, N. Yokoya, J. Yao, L. Gao, L. Zhang, J. Chanussot, and X. Zhu, “Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing,” IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 2, pp. 52–87, 2021.
  9. J. Chen, C. Richard, and P. Honeine, “Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model,” IEEE Transactions on Signal Processing, vol. 61, pp. 480–492, Jan 2013.
  10. D. Hong, L. Gao, J. Yao, N. Yokoya, J. Chanussot, U. Heiden, and B. Zhang, “Endmember-guided unmixing network (EGU-Net): A general deep learning framework for self-supervised hyperspectral unmixing,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  11. R. A. Borsoi, T. Imbiriba, and J. C. M. Bermudez, “Deep generative endmember modeling: An application to unsupervised spectral unmixing,” IEEE Transactions on Computational Imaging, vol. 6, pp. 374–384, 2019.
  12. Y. Qian, F. Xiong, Q. Qian, and J. Zhou, “Spectral mixture model inspired network architectures for hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7418–7434, 2020.
  13. T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” Artificial intelligence, vol. 267, pp. 1–38, 2019.
  14. R. Guo, W. Wang, and H. Qi, “Hyperspectral image unmixing using autoencoder cascade,” in Proc. 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, June 2015, pp. 1–4.
  15. B. Palsson, J. Sigurdsson, J. R. Sveinsson, and M. O. Ulfarsson, “Hyperspectral unmixing using a neural network autoencoder,” IEEE Access, vol. 6, pp. 25 646–25 656, 2018.
  16. M. Wang, M. Zhao, J. Chen, and S. Rahardja, “Nonlinear unmixing of hyperspectral data via deep autoencoder networks,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 9, pp. 1467–1471, 2019.
  17. H. Li, R. A. Borsoi, T. Imbiriba, P. Closas, J. C. Bermudez, and D. Erdoğmuş, “Model-based deep autoencoder networks for nonlinear hyperspectral unmixing,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.
  18. S. Shi, M. Zhao, L. Zhang, Y. Altmann, and J. Chen, “Probabilistic generative model for hyperspectral unmixing accounting for endmember variability,” IEEE Transactions on Geoscience and Remote Sensing, 2021.
  19. Y. Su, J. Li, A. Plaza, A. Marinoni, P. Gamba, and S. Chakravortty, “DAEN: Deep autoencoder networks for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4309–4321, 2019.
  20. N. Siddharth, B. Paige, J.-W. van de Meent, A. Desmaison, N. Goodman, P. Kohli, F. Wood, and P. Torr, “Learning disentangled representations with semi-supervised deep generative models,” in Advances in Neural Information Processing Systems, vol. 30, 2017.
  21. R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, and C. Richard, “Deep generative models for library augmentation in multiple endmember spectral mixture analysis,” IEEE Geoscience and Remote Sensing Letters, 2020.
  22. C. Naesseth, F. Ruiz, S. Linderman, and D. Blei, “Reparameterization gradients through acceptance-rejection sampling algorithms,” in Artificial Intelligence and Statistics.   PMLR, 2017, pp. 489–498.
  23. M. Jankowiak and F. Obermeyer, “Pathwise derivatives beyond the reparameterization trick,” in Proc. 35th International Conference on Machine Learning, vol. 80, 2018, pp. 2235–2244.
  24. Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, “Hyperspectral unmixing via l1/212{}_{1/2}start_FLOATSUBSCRIPT 1 / 2 end_FLOATSUBSCRIPT sparsity-constrained nonnegative matrix factorization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4282–4297, 2011.
  25. D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-supervised learning with deep generative models,” in Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2, 2014, pp. 3581–3589.
  26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. International Conf. on Learning Representations (ICLR), 2015.
  27. J. Yao, D. Meng, Q. Zhao, W. Cao, and Z. Xu, “Nonconvex-sparsity and nonlocal-smoothness-based blind hyperspectral unmixing,” IEEE Transactions on Image Processing, vol. 28, no. 6, pp. 2991–3006, 2019.
  28. N. Dobigeon, J.-Y. Tourneret, and C. I. Chang, “Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery,” IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 2684–2695, 2008.
  29. M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse unmixing of hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 6, pp. 2014–2039, 2011.
  30. R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, and C. Richard, “A fast multiscale spatial regularization for sparse hyperspectral unmixing,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 4, pp. 598–602, April 2019.
  31. Y. Qian, F. Xiong, S. Zeng, J. Zhou, and Y. Y. Tang, “Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 3, pp. 1776–1792, 2016.
  32. T. Imbiriba, R. A. Borsoi, and J. C. M. Bermudez, “Low-rank tensor modeling for hyperspectral unmixing accounting for spectral variability,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 1833–1842, 2020.
  33. R. A. Borsoi, T. Imbiriba, and J. C. Moreira Bermudez, “Improved hyperspectral unmixing with endmember variability parametrized using an interpolated scaling tensor,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 2177–2181.
  34. T. W. Ray and B. C. Murray, “Nonlinear spectral mixing in desert vegetation,” Remote Sensing of Environment, vol. 55, no. 1, pp. 59–64, 1996.
  35. J. M. P. Nascimento and J. M. Bioucas-Dias, “Nonlinear mixture model for hyperspectral unmixing,” in SPIE Europe Remote Sensing.   International Society for Optics and Photonics, 2009, pp. 74 770I–74 770I.
  36. A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, “Nonlinear unmixing of hyperspectral images using a generalized bilinear model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4153–4162, Nov. 2011.
  37. Y. Altmann, A. Halimi, N. Dobigeon, and J. Y. Tourneret, “Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery,” IEEE Transactions on Image Processing, vol. 21, no. 6, pp. 3017–3025, June 2012.
  38. P.-X. Li, B. Wu, and L. Zhang, “Abundance estimation from hyperspectral image based on probabilistic outputs of multi-class support vector machines,” in 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 6, July 2005, pp. 4315–4318.
  39. R. Heylen, D. Burazerovic, and P. Scheunders, “Non-linear spectral unmixing by geodesic simplex volume maximization,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 3, pp. 534–542, 2011.
  40. R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, and C. Richard, “A blind multiscale spatial regularization framework for kernel-based spectral unmixing,” IEEE Transactions on Image Processing, vol. 29, pp. 4965–4979, 2020.
  41. A. Zare and K. C. Ho, “Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing,” IEEE Signal Processing Magazine, vol. 31, pp. 95–104, January 2014.
  42. L. Drumetz, T. R. Meyer, J. Chanussot, A. L. Bertozzi, and C. Jutten, “Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms,” IEEE Transactions on Image Processing, vol. 28, no. 7, pp. 3435–3450, 2019.
  43. D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, and R. Green, “Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture models,” Remote Sensing of Environment, vol. 65, no. 3, pp. 267–279, 1998.
  44. R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, and C. Richard, “Fast unmixing and change detection in multitemporal hyperspectral data,” IEEE Transactions on Computational Imaging, vol. 7, pp. 975–988, 2021.
  45. A. Halimi, N. Dobigeon, and J.-Y. Tourneret, “Unsupervised unmixing of hyperspectral images accounting for endmember variability,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 4904–4917, 2015.
  46. X. Du, A. Zare, P. Gader, and D. Dranishnikov, “Spatial and spectral unmixing using the beta compositional model,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 1994–2003, 2014.
  47. Y. Zhou, A. Rangarajan, and P. D. Gader, “A Gaussian mixture model representation of endmember variability in hyperspectral unmixing,” IEEE Transactions on Image Processing, vol. 27, no. 5, pp. 2242–2256, May 2018.
  48. J. Yao, D. Hong, L. Xu, D. Meng, J. Chanussot, and Z. Xu, “Sparsity-enhanced convolutional decomposition: A novel tensor-based paradigm for blind hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  49. P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Hyperspectral unmixing with spectral variability using a perturbed linear mixing model,” IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 525–538, Feb. 2016.
  50. L. Drumetz, M.-A. Veganzones, S. Henrot, R. Phlypo, J. Chanussot, and C. Jutten, “Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability,” IEEE Transactions on Image Processing, vol. 25, no. 8, pp. 3890–3905, 2016.
  51. T. Imbiriba, R. A. Borsoi, and J. C. M. Bermudez, “Generalized linear mixing model accounting for endmember variability,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018, pp. 1862–1866.
  52. D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented linear mixing model to address spectral variability for hyperspectral unmixing,” IEEE Transactions on Image Processing, vol. 28, no. 4, pp. 1923–1938, 2019.
  53. R. A. Borsoi, T. Imbiriba, and J. C. Moreira Bermudez, “A data dependent multiscale model for hyperspectral unmixing with spectral variability,” IEEE Transactions on Image Processing, vol. 29, pp. 3638–3651, 2020.
  54. Y. Deville, G. Faury, V. Achard, and X. Briottet, “An NMF-based method for jointly handling mixture nonlinearity and intraclass variability in hyperspectral blind source separation,” Digital Signal Processing, vol. 133, p. 103838, 2023.
  55. D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph convolutional networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5966–5978, 2020.
  56. D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanussot, “SpectralFormer: Rethinking hyperspectral image classification with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
  57. K. J. Guilfoyle, M. L. Althouse, and C.-I. Chang, “A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 10, pp. 2314–2318, 2001.
  58. J. Plaza and A. Plaza, “Spectral mixture analysis of hyperspectral scenes using intelligently selected training samples,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 2, pp. 371–375, 2010.
  59. X. Li, X. Jia, L. Wang, and K. Zhao, “On spectral unmixing resolution using extended support vector machines,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 9, pp. 4985–4996, 2015.
  60. M. M. Sahoo, A. Porwal, A. Karnieli et al., “Deep-learning-based latent space encoding for spectral unmixing of geological materials,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 183, pp. 307–320, 2022.
  61. S. Ozkan, B. Kaya, and G. B. Akar, “Endnet: Sparse autoencoder network for endmember extraction and hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, no. 99, pp. 1–15, 2018.
  62. Y. Qu and H. Qi, “uDAS: An untied denoising autoencoder with sparsity for spectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 3, pp. 1698–1712, March 2019.
  63. B. Palsson, M. O. Ulfarsson, and J. R. Sveinsson, “Convolutional autoencoder for spectral-spatial hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, pp. 1–15, 2020.
  64. Z. Hua, X. Li, J. Jiang, and L. Zhao, “Gated autoencoder network for spectral–spatial hyperspectral unmixing,” Remote Sensing, vol. 13, no. 16, p. 3147, 2021.
  65. J. Yao, D. Hong, J. Chanussot, D. Meng, X. Zhu, and Z. Xu, “Cross-attention in coupled unmixing nets for unsupervised hyperspectral super-resolution,” in Proc. 16th European Conference on Computer Vision (ECCV), Part XXIX 16.   Glasgow, UK: Springer, 2020, pp. 208–224.
  66. M. Zhao, M. Wang, J. Chen, and S. Rahardja, “Hyperspectral unmixing for additive nonlinear models with a 3-D-CNN autoencoder network,” IEEE Transactions on Geoscience and Remote Sensing, 2021.
  67. M. Zhao, L. Yan, and J. Chen, “LSTM-DNN based autoencoder network for nonlinear hyperspectral image unmixing,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 2, pp. 295–309, 2021.
  68. K. T. Shahid and I. D. Schizas, “Unsupervised hyperspectral unmixing via nonlinear autoencoders,” IEEE Transactions on Geoscience and Remote Sensing, 2021.
  69. M. Zhao, S. Shi, J. Chen, and N. Dobigeon, “A 3D-CNN framework for hyperspectral unmixing with spectral variability,” IEEE Transactions on Geoscience and Remote Sensing, 2022.
  70. T. Uezato, R. J. Murphy, A. Melkumyan, and A. Chlingaryan, “A novel spectral unmixing method incorporating spectral variability within endmember classes,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 5, pp. 2812–2831, 2016.
  71. B. Koirala, Z. Zahiri, A. Lamberti, and P. Scheunders, “Robust supervised method for nonlinear spectral unmixing accounting for endmember variability,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, pp. 7434–7448, 2020.
  72. Q. Jin, Y. Ma, X. Mei, and J. Ma, “Tanet: An unsupervised two-stream autoencoder network for hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, 2021.
  73. H.-C. Li, X.-R. Feng, D.-H. Zhai, Q. Du, and A. Plaza, “Self-supervised robust deep matrix factorization for hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, 2021.
  74. R. A. Borsoi, T. Imbiriba, and P. Closas, “Dynamical hyperspectral unmixing with variational recurrent neural networks,” IEEE Transactions on Image Processing, vol. 32, pp. 2279–2294, 2023.
  75. A. Min, Z. Guo, H. Li, and J. Peng, “JMnet: Joint metric neural network for hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2021.
  76. Q. Jin, Y. Ma, F. Fan, J. Huang, X. Mei, and J. Ma, “Adversarial autoencoder network for hyperspectral unmixing,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  77. L. Gao, Z. Han, D. Hong, B. Zhang, and J. Chanussot, “CyCU-Net: Cycle-consistency unmixing network by learning cascaded autoencoders,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  78. V. S. Deshpande, J. S. Bhatt et al., “A practical approach for hyperspectral unmixing using deep learning,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.
  79. B. Rasti, B. Koirala, P. Scheunders, and P. Ghamisi, “UnDIP: Hyperspectral unmixing using deep image prior,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
  80. C. Zhou and M. R. Rodrigues, “ADMM-Based hyperspectral unmixing networks for abundance and endmember estimation,” IEEE Transactions on Geoscience and Remote Sensing, 2021.
  81. A. Halimi, N. Dobigeon, and J.-Y. Tourneret, “Unsupervised unmixing of hyperspectral images accounting for endmember variability,” IEEE Transactions Image Processing, vol. 24, no. 12, pp. 4904–4917, Dec. 2015.
  82. O. Eches, J. A. Benediktsson, N. Dobigeon, and J.-Y. Tourneret, “Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral images,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 5–16, 2012.
  83. F. Amiri and M. H. Kahaei, “Bayesian unmixing using sparse Dirichlet prior with polynomial post-nonlinear mixing model,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 14, no. 4, pp. 650–651, 2019.
  84. J. S. Bhatt, M. V. Joshi, and S. Vijayashekhar, “A multitemporal linear spectral unmixing: An iterative approach accounting for abundance variations,” in Proc. 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).   IEEE, 2018, pp. 1–5.
  85. R. A. Borsoi, T. Imbiriba, P. Closas, J. C. M. Bermudez, and C. Richard, “Kalman filtering and expectation maximization for multitemporal spectral unmixing,” IEEE Geoscience and Remote Sensing Letters, 2020.
  86. M. T. Eismann and R. C. Hardie, “Stochastic spectral unmixing with enhanced endmember class separation,” Applied Optics, vol. 43, no. 36, pp. 6596–6608, 2004.
  87. S. Jacquemoud and F. Baret, “PROSPECT: A model of leaf optical properties spectra,” Remote Sensing of Environment, vol. 34, no. 2, pp. 75–91, 1990.
  88. C.-I. Chang, “A review of virtual dimensionality for hyperspectral imagery,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 4, pp. 1285–1305, 2018.
  89. S. Vijayashekhar, J. S. Bhatt, and B. Chattopadhyay, “Virtual dimensionality of hyperspectral data: Use of multiple hypothesis testing for controlling type-I error,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 2974–2985, 2020.
  90. R. Close, P. Gader, J. Wilson, and A. Zare, “Using physics-based macroscopic and microscopic mixture models for hyperspectral pixel unmixing,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, vol. 8390.   SPIE, 2012, pp. 469–481.
  91. M. Zhao, M. Wang, J. Chen, and S. Rahardja, “Hyperspectral unmixing via deep autoencoder networks for a generalized linear-mixture/nonlinear-fluctuation model,” arXiv preprint: 1904.13017, 2019.
  92. C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther, “How to train deep variational autoencoders and probabilistic ladder networks,” in Proc. 33rd International Conference on Machine Learning (ICML 2016), 2016.
  93. D. P. Kingma, M. Welling et al., “An introduction to variational autoencoders,” Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.
  94. J. Schulman, N. Heess, T. Weber, and P. Abbeel, “Gradient estimation using stochastic computation graphs,” in Proc. 28th International Conference on Neural Information Processing Systems - Volume 2, ser. NIPS’15.   Cambridge, MA, USA: MIT Press, 2015, p. 3528–3536.
  95. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc. 2nd International Conference on Learning Representations (ICLR), Y. Bengio and Y. LeCun, Eds., Banff, AB, Canada, 2014.
  96. A. Srivastava and C. Sutton, “Autoencoding variational inference for topic models,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017.
  97. A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins et al., “Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI,” Information fusion, vol. 58, pp. 82–115, 2020.
  98. V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021.
  99. P. Ablin, T. Moreau, M. Massias, and A. Gramfort, “Learning step sizes for unfolded sparse coding,” in Advances in Neural Information Processing Systems, vol. 32, 2019.
  100. B. Somers, M. Zortea, A. Plaza, and G. P. Asner, “Automated extraction of image-based endmember bundles for improved spectral unmixing,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 396–408, 2012.
  101. J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex Component Analysis: A fast algorithm to unmix hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898–910, April 2005.
  102. R. Ammanouil, A. Ferrari, C. Richard, and S. Mathieu, “Nonlinear unmixing of hyperspectral data with vector-valued kernel functions,” IEEE Transactions on Image Processing, vol. 26, no. 1, pp. 340–354, 2017.
  103. B. Somers, K. Cools, S. Delalieux, J. Stuckens, D. Van der Zande, W. W. Verstraeten, and P. Coppin, “Nonlinear hyperspectral mixture analysis for tree cover estimates in orchards,” Remote Sensing of Environment, vol. 113, no. 6, pp. 1183–1193, 2009.
  104. J. S. Bhatt, M. V. Joshi, and M. S. Raval, “A data-driven stochastic approach for unmixing hyperspectral imagery,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 1936–1946, 2014.
  105. F. A. Kruse, J. W. Boardman, and J. F. Huntington, “Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping,” IEEE transactions on Geoscience and Remote Sensing, vol. 41, no. 6, pp. 1388–1400, 2003.
Citations (2)

Summary

We haven't generated a summary for this paper yet.