Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Hyperspectral Unmixing based on Multilinear Mixing Model using Convolutional Autoencoders (2303.08156v1)

Published 14 Mar 2023 in cs.CV and eess.IV

Abstract: Unsupervised spectral unmixing consists of representing each observed pixel as a combination of several pure materials called endmembers with their corresponding abundance fractions. Beyond the linear assumption, various nonlinear unmixing models have been proposed, with the associated optimization problems solved either by traditional optimization algorithms or deep learning techniques. Current deep learning-based nonlinear unmixing focuses on the models in additive, bilinear-based formulations. By interpreting the reflection process using the discrete Markov chain, the multilinear mixing model (MLM) successfully accounts for the up to infinite-order interactions between endmembers. However, to simulate the physics process of MLM by neural networks explicitly is a challenging problem that has not been approached by far. In this article, we propose a novel autoencoder-based network for unsupervised unmixing based on MLM. Benefitting from an elaborate network design, the relationships among all the model parameters {\em i.e.}, endmembers, abundances, and transition probability parameters are explicitly modeled. There are two modes: MLM-1DAE considers only pixel-wise spectral information, and MLM-3DAE exploits the spectral-spatial correlations within input patches. Experiments on both the synthetic and real datasets demonstrate the effectiveness of the proposed method as it achieves competitive performance to the classic solutions of MLM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.