Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Robust Overfitting from the Feature Generalization Perspective (2310.00607v2)

Published 1 Oct 2023 in cs.LG

Abstract: Adversarial training (AT) constructs robust neural networks by incorporating adversarial perturbations into natural data. However, it is plagued by the issue of robust overfitting (RO), which severely damages the model's robustness. In this paper, we investigate RO from a novel feature generalization perspective. Specifically, we design factor ablation experiments to assess the respective impacts of natural data and adversarial perturbations on RO, identifying that the inducing factor of RO stems from natural data. Given that the only difference between adversarial and natural training lies in the inclusion of adversarial perturbations, we further hypothesize that adversarial perturbations degrade the generalization of features in natural data and verify this hypothesis through extensive experiments. Based on these findings, we provide a holistic view of RO from the feature generalization perspective and explain various empirical behaviors associated with RO. To examine our feature generalization perspective, we devise two representative methods, attack strength and data augmentation, to prevent the feature generalization degradation during AT. Extensive experiments conducted on benchmark datasets demonstrate that the proposed methods can effectively mitigate RO and enhance adversarial robustness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chaojian Yu (8 papers)
  2. Xiaolong Shi (2 papers)
  3. Jun Yu (232 papers)
  4. Bo Han (282 papers)
  5. Tongliang Liu (251 papers)