Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alleviating Robust Overfitting of Adversarial Training With Consistency Regularization (2205.11744v1)

Published 24 May 2022 in cs.LG and cs.CV

Abstract: Adversarial training (AT) has proven to be one of the most effective ways to defend Deep Neural Networks (DNNs) against adversarial attacks. However, the phenomenon of robust overfitting, i.e., the robustness will drop sharply at a certain stage, always exists during AT. It is of great importance to decrease this robust generalization gap in order to obtain a robust model. In this paper, we present an in-depth study towards the robust overfitting from a new angle. We observe that consistency regularization, a popular technique in semi-supervised learning, has a similar goal as AT and can be used to alleviate robust overfitting. We empirically validate this observation, and find a majority of prior solutions have implicit connections to consistency regularization. Motivated by this, we introduce a new AT solution, which integrates the consistency regularization and Mean Teacher (MT) strategy into AT. Specifically, we introduce a teacher model, coming from the average weights of the student models over the training steps. Then we design a consistency loss function to make the prediction distribution of the student models over adversarial examples consistent with that of the teacher model over clean samples. Experiments show that our proposed method can effectively alleviate robust overfitting and improve the robustness of DNN models against common adversarial attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shudong Zhang (8 papers)
  2. Haichang Gao (14 papers)
  3. Tianwei Zhang (199 papers)
  4. Yunyi Zhou (3 papers)
  5. Zihui Wu (19 papers)
Citations (3)