Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Further remarks on de Sitter space, extremal surfaces and time entanglement (2310.00320v4)

Published 30 Sep 2023 in hep-th

Abstract: We develop further the investigations in arXiv:2210.12963 [hep-th] on de Sitter space, extremal surfaces and time entanglement. We discuss the no-boundary de Sitter extremal surface areas as certain analytic continuations from $AdS$ while also amounting to space-time rotations. The structure of the extremal surfaces suggests a geometric picture of the time-entanglement or pseudo-entanglement wedge. We also study some entropy relations for multiple subregions. The analytic continuation suggests a heuristic Lewkowycz-Maldacena formulation of the extremal surface areas. In the bulk, this is now a replica formulation on the Wavefunction which suggests interpretation as pseudo-entropy. Finally we also discuss aspects of future-past entangled states and time evolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys.  2, 231 (1998) [Int. J. Theor. Phys.  38, 1113 (1999)] [arXiv:hep-th/9711200].
  2. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett.  B 428, 105 (1998) [arXiv:hep-th/9802109].
  3. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys.  2, 253 (1998) [arXiv:hep-th/9802150].
  4. A. Strominger, “The dS / CFT correspondence,” JHEP 0110, 034 (2001) [hep-th/0106113].
  5. E. Witten, “Quantum gravity in de Sitter space,” [hep-th/0106109].
  6. J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 0305, 013 (2003), [astro-ph/0210603].
  7. D. Anninos, T. Hartman and A. Strominger, “Higher Spin Realization of the dS/CFT Correspondence,” Class. Quant. Grav.  34, no. 1, 015009 (2017) doi:10.1088/1361-6382/34/1/015009 [arXiv:1108.5735 [hep-th]].
  8. M. Spradlin, A. Strominger and A. Volovich, “Les Houches lectures on de Sitter space,” hep-th/0110007.
  9. D. Anninos, “De Sitter Musings,” Int. J. Mod. Phys. A 27, 1230013 (2012) doi:10.1142/S0217751X1230013X [arXiv:1205.3855 [hep-th]].
  10. D. A. Galante, “Modave lectures on de Sitter space & holography,” PoS Modave2022, 003 (2023) doi:10.22323/1.435.0003 [arXiv:2306.10141 [hep-th]].
  11. G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D 15, 2738 (1977). doi:10.1103/PhysRevD.15.2738
  12. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett.  96, 181602 (2006) [hep-th/0603001].
  13. S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 0608, 045 (2006) [hep-th/0605073].
  14. V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic entanglement entropy proposal,” JHEP 0707 (2007) 062 [arXiv:0705.0016 [hep-th]].
  15. M. Rangamani and T. Takayanagi, “Holographic Entanglement Entropy,” Lect. Notes Phys. 931, pp.1-246 (2017) Springer, 2017, doi:10.1007/978-3-319-52573-0 [arXiv:1609.01287 [hep-th]].
  16. K. Narayan, “de Sitter extremal surfaces,” Phys. Rev. D 91, no. 12, 126011 (2015) [arXiv:1501.03019 [hep-th]].
  17. K. Narayan, “de Sitter space and extremal surfaces for spheres,” Phys. Lett. B 753, 308 (2016) [arXiv:1504.07430 [hep-th]].
  18. Y. Sato, “Comments on Entanglement Entropy in the dS/CFT Correspondence,” Phys. Rev. D 91, no. 8, 086009 (2015) [arXiv:1501.04903 [hep-th]].
  19. M. Miyaji and T. Takayanagi, “Surface/State Correspondence as a Generalized Holography,” PTEP 2015, no. 7, 073B03 (2015) doi:10.1093/ptep/ptv089 [arXiv:1503.03542 [hep-th]].
  20. K. Narayan, “On extremal surfaces and de Sitter entropy,” Phys. Lett. B 779, 214 (2018) [arXiv:1711.01107 [hep-th]].
  21. K. Narayan, “de Sitter future-past extremal surfaces and the entanglement wedge,” Phys. Rev. D 101, no.8, 086014 (2020) doi:10.1103/PhysRevD.101.086014 [arXiv:2002.11950 [hep-th]].
  22. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi and Y. Taki, “Pseudoentropy in dS/CFT and Timelike Entanglement Entropy,” Phys. Rev. Lett. 130, no.3, 031601 (2023) doi:10.1103/PhysRevLett.130.031601 [arXiv:2210.09457 [hep-th]].
  23. K. Narayan, “de Sitter space, extremal surfaces, and time entanglement,” Phys. Rev. D 107, no.12, 126004 (2023) doi:10.1103/PhysRevD.107.126004 [arXiv:2210.12963 [hep-th]].
  24. Y. Hikida, T. Nishioka, T. Takayanagi and Y. Taki, “CFT duals of three-dimensional de Sitter gravity,” JHEP 05, 129 (2022) doi:10.1007/JHEP05(2022)129 [arXiv:2203.02852 [hep-th]].
  25. Y. Hikida, T. Nishioka, T. Takayanagi and Y. Taki, “Holography in de Sitter Space via Chern-Simons Gauge Theory,” Phys. Rev. Lett. 129, no.4, 041601 (2022) [arXiv:2110.03197 [hep-th]].
  26. T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors,” JHEP 1305, 014 (2013) [arXiv:1303.1080 [hep-th]].
  27. J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 0304, 021 (2003) [hep-th/0106112].
  28. C. Arias, F. Diaz and P. Sundell, “De Sitter Space and Entanglement,” Class. Quant. Grav.  37, no. 1, 015009 (2020) doi:10.1088/1361-6382/ab5b78 [arXiv:1901.04554 [hep-th]].
  29. C. Arias, F. Diaz, R. Olea and P. Sundell, “Liouville description of conical defects in dS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT, Gibbons-Hawking entropy as modular entropy, and dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT holography,” JHEP 04, 124 (2020) doi:10.1007/JHEP04(2020)124 [arXiv:1906.05310 [hep-th]].
  30. J. Cotler and A. Strominger, “Cosmic ER=EPR in dS/CFT,” [arXiv:2302.00632 [hep-th]].
  31. J. Cotler and A. Strominger, “The Universe as a Quantum Encoder,” [arXiv:2201.11658 [hep-th]].
  32. Y. Nakata, T. Takayanagi, Y. Taki, K. Tamaoka and Z. Wei, “New holographic generalization of entanglement entropy,” Phys. Rev. D 103, no.2, 026005 (2021) [arXiv:2005.13801 [hep-th]].
  33. A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka and Z. Wei, “Pseudo Entropy in Free Quantum Field Theories,” Phys. Rev. Lett. 126, no.8, 081601 (2021) doi:10.1103/PhysRevLett.126.081601 [arXiv:2011.09648 [hep-th]].
  34. A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka and Z. Wei, “Aspects of pseudoentropy in field theories,” Phys. Rev. Res. 3, no.3, 033254 (2021) doi:10.1103/PhysRevResearch.3.033254 [arXiv:2106.03118 [hep-th]].
  35. J. Mukherjee, “Pseudo Entropy in U(1) gauge theory,” JHEP 10, 016 (2022) doi:10.1007/JHEP10(2022)016 [arXiv:2205.08179 [hep-th]].
  36. B. Liu, H. Chen and B. Lian, “Entanglement Entropy in Timelike Slices: a Free Fermion Study,” [arXiv:2210.03134 [cond-mat.stat-mech]].
  37. Z. Li, Z. Q. Xiao and R. Q. Yang, “On holographic time-like entanglement entropy,” JHEP 04, 004 (2023) doi:10.1007/JHEP04(2023)004 [arXiv:2211.14883 [hep-th]].
  38. S. He, J. Yang, Y. X. Zhang and Z. X. Zhao, “Pseudo-entropy for descendant operators in two-dimensional conformal field theories,” [arXiv:2301.04891 [hep-th]].
  39. H. Y. Chen, Y. Hikida, Y. Taki and T. Uetoko, “Complex saddles of three-dimensional de Sitter gravity via holography,” Phys. Rev. D 107, no.10, L101902 (2023) [arXiv:2302.09219 [hep-th]].
  40. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi and Y. Taki, “Timelike entanglement entropy,” JHEP 05, 052 (2023) doi:10.1007/JHEP05(2023)052 [arXiv:2302.11695 [hep-th]].
  41. X. Jiang, P. Wang, H. Wu and H. Yang, “Timelike entanglement entropy and TT¯ deformation,” Phys. Rev. D 108, no.4, 046004 (2023) doi:10.1103/PhysRevD.108.046004 [arXiv:2302.13872 [hep-th]].
  42. Z. Chen, “Complex-valued Holographic Pseudo Entropy via Real-time AdS/CFT Correspondence,” [arXiv:2302.14303 [hep-th]].
  43. K. Narayan and H. K. Saini, “Notes on time entanglement and pseudo-entropy,” [arXiv:2303.01307 [hep-th]].
  44. X. Jiang, P. Wang, H. Wu and H. Yang, “Timelike entanglement entropy in dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 08, 216 (2023) doi:10.1007/JHEP08(2023)216 [arXiv:2304.10376 [hep-th]].
  45. C. S. Chu and H. Parihar, “Time-like entanglement entropy in AdS/BCFT,” JHEP 06, 173 (2023) doi:10.1007/JHEP06(2023)173 [arXiv:2304.10907 [hep-th]].
  46. S. He, J. Yang, Y. X. Zhang and Z. X. Zhao, “Pseudo entropy of primary operators in T⁢T¯/J⁢T¯𝑇¯𝑇𝐽¯𝑇T\overline{T}/J\overline{T}italic_T over¯ start_ARG italic_T end_ARG / italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 09, 025 (2023) doi:10.1007/JHEP09(2023)025 [arXiv:2305.10984 [hep-th]].
  47. H. Y. Chen, Y. Hikida, Y. Taki and T. Uetoko, “Complex saddles of Chern-Simons gravity and dS3/CFT2 correspondence,” Phys. Rev. D 108, no.6, 066005 (2023) [arXiv:2306.03330 [hep-th]].
  48. D. Chen, X. Jiang and H. Yang, “Holographic T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed entanglement entropy in dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” [arXiv:2307.04673 [hep-th]].
  49. A. J. Parzygnat, T. Takayanagi, Y. Taki and Z. Wei, “SVD Entanglement Entropy,” [arXiv:2307.06531 [hep-th]].
  50. P. Z. He and H. Q. Zhang, “Timelike Entanglement Entropy from Rindler Method,” [arXiv:2307.09803 [hep-th]].
  51. W. z. Guo and J. Zhang, “Sum rule for pseudo Rényi entropy,” [arXiv:2308.05261 [hep-th]].
  52. F. Omidi, “Pseudo Rényi Entanglement Entropies For an Excited State and Its Time Evolution in a 2D CFT,” [arXiv:2309.04112 [hep-th]].
  53. A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08, 090 (2013) doi:10.1007/JHEP08(2013)090 [arXiv:1304.4926 [hep-th]].
  54. X. Dong, A. Lewkowycz and M. Rangamani, “Deriving covariant holographic entanglement,” JHEP 11, 028 (2016) doi:10.1007/JHEP11(2016)028 [arXiv:1607.07506 [hep-th]].
  55. X. Dong, “The Gravity Dual of Renyi Entropy,” Nature Commun. 7, 12472 (2016) doi:10.1038/ncomms12472 [arXiv:1601.06788 [hep-th]].
  56. X. Dong, “Holographic Entanglement Entropy for General Higher Derivative Gravity,” JHEP 01, 044 (2014) doi:10.1007/JHEP01(2014)044 [arXiv:1310.5713 [hep-th]].
  57. H. Casini, M. Huerta and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 1105, 036 (2011) [arXiv:1102.0440 [hep-th]].
  58. N. Callebaut, “Entanglement in conformal field theory and holography,” [arXiv:2303.16827 [hep-th]].
  59. Y. Chen, V. Gorbenko and J. Maldacena, “Bra-ket wormholes in gravitationally prepared states,” JHEP 02, 009 (2021) doi:10.1007/JHEP02(2021)009 [arXiv:2007.16091 [hep-th]].
  60. K. Goswami, K. Narayan and H. K. Saini, “Cosmologies, singularities and quantum extremal surfaces,” JHEP 03, 201 (2022) doi:10.1007/JHEP03(2022)201 [arXiv:2111.14906 [hep-th]].
  61. K. Narayan, “On d⁢S4𝑑subscript𝑆4dS_{4}italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT extremal surfaces and entanglement entropy in some ghost CFTs,” Phys. Rev. D 94, no. 4, 046001 (2016) [arXiv:1602.06505 [hep-th]].
  62. D. P. Jatkar and K. Narayan, “Ghost-spin chains, entanglement and b⁢c𝑏𝑐bcitalic_b italic_c-ghost CFTs,” Phys. Rev. D 96, no. 10, 106015 (2017) [arXiv:1706.06828 [hep-th]].
  63. D. Harlow and D. Stanford, “Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT,” arXiv:1104.2621 [hep-th].
  64. J. Maldacena, G. J. Turiaci and Z. Yang, “Two dimensional Nearly de Sitter gravity,” JHEP 01, 139 (2021) doi:10.1007/JHEP01(2021)139 [arXiv:1904.01911 [hep-th]].
  65. B. Czech, J. L. Karczmarek, F. Nogueira and M. Van Raamsdonk, “The Gravity Dual of a Density Matrix,” Class. Quant. Grav.  29, 155009 (2012) doi:10.1088/0264-9381/29/15/155009 [arXiv:1204.1330 [hep-th]].
  66. A. C. Wall, “Maximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy,” Class. Quant. Grav.  31, no. 22, 225007 (2014) [arXiv:1211.3494 [hep-th]].
  67. M. Headrick, V. E. Hubeny, A. Lawrence and M. Rangamani, “Causality & holographic entanglement entropy,” JHEP 1412, 162 (2014) doi:10.1007/JHEP12(2014)162 [arXiv:1408.6300 [hep-th]].
  68. D. Harlow, “TASI Lectures on the Emergence of Bulk Physics in AdS/CFT,” PoS TASI 2017, 002 (2018) doi:10.22323/1.305.0002 [arXiv:1802.01040 [hep-th]].
  69. M. Headrick, “Lectures on entanglement entropy in field theory and holography,” arXiv:1907.08126 [hep-th].
  70. A. Almheiri, X. Dong and D. Harlow, “Bulk Locality and Quantum Error Correction in AdS/CFT,” JHEP 1504, 163 (2015) doi:10.1007/JHEP04(2015)163 [arXiv:1411.7041 [hep-th]].
  71. D. L. Jafferis, A. Lewkowycz, J. Maldacena and S. J. Suh, “Relative entropy equals bulk relative entropy,” JHEP 1606, 004 (2016) doi:10.1007/JHEP06(2016)004 [arXiv:1512.06431 [hep-th]].
  72. X. Dong, D. Harlow and A. C. Wall, “Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality,” Phys. Rev. Lett.  117, no. 2, 021601 (2016) [arXiv:1601.05416 [hep-th]].
  73. P. Hayden, M. Headrick and A. Maloney, “Holographic Mutual Information is Monogamous,” Phys. Rev. D 87, no.4, 046003 (2013) doi:10.1103/PhysRevD.87.046003 [arXiv:1107.2940 [hep-th]].
  74. V. Chandrasekaran, R. Longo, G. Penington and E. Witten, “An algebra of observables for de Sitter space,” JHEP 02, 082 (2023) doi:10.1007/JHEP02(2023)082 [arXiv:2206.10780 [hep-th]].
  75. J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys. Rev. D 28, 2960-2975 (1983) doi:10.1103/PhysRevD.28.2960
  76. R. Bousso and S. W. Hawking, “The Probability for primordial black holes,” Phys. Rev. D 52, 5659-5664 (1995) doi:10.1103/PhysRevD.52.5659 [arXiv:gr-qc/9506047 [gr-qc]].
  77. R. Bousso and S. W. Hawking, “Pair creation of black holes during inflation,” Phys. Rev. D 54, 6312-6322 (1996) doi:10.1103/PhysRevD.54.6312 [arXiv:gr-qc/9606052 [gr-qc]].
  78. J. Maldacena, “Einstein Gravity from Conformal Gravity,” [arXiv:1105.5632 [hep-th]].
  79. T. Chakraborty, J. Chakravarty, V. Godet, P. Paul and S. Raju, “The Hilbert space of de Sitter quantum gravity,” [arXiv:2303.16315 [hep-th]].
  80. C. Holzhey, F. Larsen and F. Wilczek, “Geometric and renormalized entropy in conformal field theory,” Nucl. Phys. B 424, 443 (1994) [hep-th/9403108].
  81. P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech.  0406, P06002 (2004) [hep-th/0405152].
  82. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” J. Phys. A 42, 504005 (2009) doi:10.1088/1751-8113/42/50/504005 [arXiv:0905.4013 [cond-mat.stat-mech]].
  83. M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav. 42, 2323-2329 (2010) doi:10.1142/S0218271810018529 [arXiv:1005.3035 [hep-th]].
  84. M. Van Raamsdonk, “Comments on quantum gravity and entanglement,” [arXiv:0907.2939 [hep-th]].
  85. K. Fernandes, K. S. Kolekar, K. Narayan and S. Roy, “Schwarzschild de Sitter and extremal surfaces,” Eur. Phys. J. C 80, no.9, 866 (2020) doi:10.1140/epjc/s10052-020-08437-2 [arXiv:1910.11788 [hep-th]].
  86. M. Miyaji, “Island for gravitationally prepared state and pseudo entanglement wedge,” JHEP 12, 013 (2021) doi:10.1007/JHEP12(2021)013 [arXiv:2109.03830 [hep-th]].
Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com