Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Risk Factors for Post-COVID-19 Mental Health Disorders: A Machine Learning Perspective (2309.16055v1)

Published 27 Sep 2023 in cs.LG, cs.CY, and q-bio.BM

Abstract: In this study, we leveraged machine learning techniques to identify risk factors associated with post-COVID-19 mental health disorders. Our analysis, based on data collected from 669 patients across various provinces in Iraq, yielded valuable insights. We found that age, gender, and geographical region of residence were significant demographic factors influencing the likelihood of developing mental health disorders in post-COVID-19 patients. Additionally, comorbidities and the severity of COVID-19 illness were important clinical predictors. Psychosocial factors, such as social support, coping strategies, and perceived stress levels, also played a substantial role. Our findings emphasize the complex interplay of multiple factors in the development of mental health disorders following COVID-19 recovery. Healthcare providers and policymakers should consider these risk factors when designing targeted interventions and support systems for individuals at risk. Machine learning-based approaches can provide a valuable tool for predicting and preventing adverse mental health outcomes in post-COVID-19 patients. Further research and prospective studies are needed to validate these findings and enhance our understanding of the long-term psychological impact of the COVID-19 pandemic. This study contributes to the growing body of knowledge regarding the mental health consequences of the COVID-19 pandemic and underscores the importance of a multidisciplinary approach to address the diverse needs of individuals on the path to recovery. Keywords: COVID-19, mental health, risk factors, machine learning, Iraq

Summary

We haven't generated a summary for this paper yet.