Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Cardiovascular Complications in Post-COVID-19 Patients Using Data-Driven Machine Learning Models (2309.16059v1)

Published 27 Sep 2023 in cs.LG, q-bio.BM, q-bio.QM, and stat.AP

Abstract: The COVID-19 pandemic has globally posed numerous health challenges, notably the emergence of post-COVID-19 cardiovascular complications. This study addresses this by utilizing data-driven machine learning models to predict such complications in 352 post-COVID-19 patients from Iraq. Clinical data, including demographics, comorbidities, lab results, and imaging, were collected and used to construct predictive models. These models, leveraging various machine learning algorithms, demonstrated commendable performance in identifying patients at risk. Early detection through these models promises timely interventions and improved outcomes. In conclusion, this research underscores the potential of data-driven machine learning for predicting post-COVID-19 cardiovascular complications, emphasizing the need for continued validation and research in diverse clinical settings.

Summary

We haven't generated a summary for this paper yet.