Strong pairing from small Fermi surface beyond weak coupling: Application to La$_3$Ni$_2$O$_7$ (2309.15095v4)
Abstract: The studies of high-temperature superconductors raise a fundamental question: Can a small Fermi surface phase, which violates the Luttinger theorem, exist and give rise to superconductivity? Our work provides a positive answer through a controlled theory based on a bilayer model with strong inter-layer spin-spin coupling ($J_\perp$) but no inter-layer hopping ($t_\perp$). Then small hole doping of the rung-singlet insulator with two electrons per rung naturally leads to small hole pockets with Fermi surface volume per flavor smaller than the free fermion result by $1/2$ of the Brillouin zone(BZ). We construct a new t-J model on a bilayer square lattice, so called ESD t-J model and employ a generalized slave boson theory, which captures this small Fermi surface phase at small hole doping $x$. This metallic state is an intrinsically strongly correlated Fermi liquid beyond weak coupling theory, violating the perturbative Luttinger theorem but consistent with the Oshikawa's non-perturbative proof. We further show that it transitions into an inter-layer paired $s'$-wave superconductor at lower temperature through Feshbach resonance with a virtual Cooper pair, with a surprising doping-induced crossover from Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) at higher hole doping levels. This leads to a superconducting dome centered around $x=0.5$, with the normal state changing from the conventional Fermi liquid in the $x>0.5$ to the unusual small Fermi surface state in the $x<0.5$ side. Our theoretical findings including phase diagrams are also confirmed by density matrix renormalization group (DMRG) simulation in quasi one dimension. Applying our theoretical framework, we provide a plausible scenario for the recently found nickelate La$_3$Ni$_2$O$_7$ materials.
- P. W. Anderson, science 235, 1196 (1987).
- C. Proust and L. Taillefer, Annual Review of Condensed Matter Physics 10, 409 (2019), https://doi.org/10.1146/annurev-conmatphys-031218-013210 .
- Y.-H. Zhang and S. Sachdev, Physical Review Research 2, 023172 (2020).
- J. Wang and Y.-Z. You, Symmetry 14, 1475 (2022).
- M. Oshikawa, Physical Review Letters 84, 3370 (2000).
- V. Crépel and L. Fu, Science Advances 7, eabh2233 (2021).
- Y. Cao and Y.-f. Yang, arXiv preprint arXiv:2307.06806 (2023).
- Q. Qin and Y.-f. Yang, arXiv preprint arXiv:2308.09044 (2023).
- Q. Qin and Y.-f. Yang, arXiv e-prints , arXiv:2308.09044 (2023), arXiv:2308.09044 [cond-mat.supr-con] .
- H. Oh and Y.-H. Zhang, arXiv preprint arXiv:2307.15706 (2023).
- C. Lu, Z. Pan, F. Yang, and C. Wu, “Interlayer coupling driven high-temperature superconductivity in la33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTni22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTo77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT under pressure,” (2023c), arXiv:2307.14965 [cond-mat.supr-con] .
- Y.-H. Zhang and A. Vishwanath, Physical Review Research 2, 023112 (2020).
- Y.-H. Zhang and Z. Zhu, Physical Review B 103, 115101 (2021).
- Y.-H. Zhang and A. Vishwanath, Physical Review B 106, 045103 (2022).
- Y.-H. Zhang and D. Mao, Physical Review B 101, 035122 (2020).
- C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
- V. Gurarie and L. Radzihovsky, Annals of Physics 322, 2 (2007), january Special Issue 2007.
- D. E. Sheehy and L. Radzihovsky, Annals of Physics 322, 1790 (2007).
- D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 96, 060401 (2006).
- S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
- J. Hauschild and F. Pollmann, SciPost Phys. Lect. Notes , 5 (2018).
- A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
- It is quite challenging to determine whether a gap is truly zero or finite but very small.
- H. Yang and Y.-H. Zhang, arXiv e-prints , arXiv:2305.01702 (2023), arXiv:2305.01702 [cond-mat.str-el] .
- W. Zwerger, The BCS-BEC crossover and the unitary Fermi gas, Vol. 836 (Springer Science & Business Media, 2011).
- S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997).
- S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.