Moving Target Defense based Secured Network Slicing System in the O-RAN Architecture (2309.13444v1)
Abstract: The open radio access network (O-RAN) architecture's native virtualization and embedded intelligence facilitate RAN slicing and enable comprehensive end-to-end services in post-5G networks. However, any vulnerabilities could harm security. Therefore, AI and ML security threats can even threaten O-RAN benefits. This paper proposes a novel approach to estimating the optimal number of predefined VNFs for each slice while addressing secure AI/ML methods for dynamic service admission control and power minimization in the O-RAN architecture. We solve this problem on two-time scales using mathematical methods for determining the predefined number of VNFs on a large time scale and the proximal policy optimization (PPO), a Deep Reinforcement Learning algorithm, for solving dynamic service admission control and power minimization for different slices on a small-time scale. To secure the ML system for O-RAN, we implement a moving target defense (MTD) strategy to prevent poisoning attacks by adding uncertainty to the system. Our experimental results show that the proposed PPO-based service admission control approach achieves an admission rate above 80\% and that the MTD strategy effectively strengthens the robustness of the PPO method against adversarial attacks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.