Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reinforcement Learning for optimal dividend problem under diffusion model (2309.10242v1)

Published 19 Sep 2023 in math.OC

Abstract: In this paper, we study the optimal dividend problem under the continuous time diffusion model with the dividend rate being restricted in a given finite interval. Unlike the standard literature, we shall particularly be interested in the case when the parameters (e.g. drift and diffusion coefficients) of the model are not specified so that the optimal control cannot be explicitly determined. We therefore follow the recently developed method via the Reinforcement Learning (RL) to find the optimal strategy. Specifically, we shall design a corresponding RL-type entropy-regularized exploratory control problem, which randomize the control actions, and balance the exploitation and exploration. We shall first carry out a theoretical analysis of the new relaxed control problem and prove that the value function is the unique bounded classical solution to the corresponding HJB equation. We will then use a policy improvement argument, along with policy evaluation devices (e.g., Temporal Difference (TD)-based algorithm and Martingale Loss (ML)-algorithms) to construct approximating sequences of the optimal strategy. We present some numerical results using different parametrization families for the cost functional to illustrate the effectiveness of the approximation schemes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.