Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Should Be Balanced in a "Balanced" Face Recognition Dataset? (2304.09818v2)

Published 17 Apr 2023 in cs.CV

Abstract: The issue of demographic disparities in face recognition accuracy has attracted increasing attention in recent years. Various face image datasets have been proposed as 'fair' or 'balanced' to assess the accuracy of face recognition algorithms across demographics. These datasets typically balance the number of identities and images across demographics. It is important to note that the number of identities and images in an evaluation dataset are {\em not} driving factors for 1-to-1 face matching accuracy. Moreover, balancing the number of identities and images does not ensure balance in other factors known to impact accuracy, such as head pose, brightness, and image quality. We demonstrate these issues using several recently proposed datasets. To improve the ability to perform less biased evaluations, we propose a bias-aware toolkit that facilitates creation of cross-demographic evaluation datasets balanced on factors mentioned in this paper.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Haiyu Wu (22 papers)
  2. Kevin W. Bowyer (50 papers)
Citations (9)