Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Proximal Bellman mappings for reinforcement learning and their application to robust adaptive filtering (2309.07548v1)

Published 14 Sep 2023 in eess.SP and cs.LG

Abstract: This paper aims at the algorithmic/theoretical core of reinforcement learning (RL) by introducing the novel class of proximal BeLLMan mappings. These mappings are defined in reproducing kernel Hilbert spaces (RKHSs), to benefit from the rich approximation properties and inner product of RKHSs, they are shown to belong to the powerful Hilbertian family of (firmly) nonexpansive mappings, regardless of the values of their discount factors, and possess ample degrees of design freedom to even reproduce attributes of the classical BeLLMan mappings and to pave the way for novel RL designs. An approximate policy-iteration scheme is built on the proposed class of mappings to solve the problem of selecting online, at every time instance, the "optimal" exponent $p$ in a $p$-norm loss to combat outliers in linear adaptive filtering, without training data and any knowledge on the statistical properties of the outliers. Numerical tests on synthetic data showcase the superior performance of the proposed framework over several non-RL and kernel-based RL schemes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.