Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pearl's and Jeffrey's Update as Modes of Learning in Probabilistic Programming (2309.07053v2)

Published 13 Sep 2023 in cs.LO and cs.AI

Abstract: The concept of updating a probability distribution in the light of new evidence lies at the heart of statistics and machine learning. Pearl's and Jeffrey's rule are two natural update mechanisms which lead to different outcomes, yet the similarities and differences remain mysterious. This paper clarifies their relationship in several ways: via separate descriptions of the two update mechanisms in terms of probabilistic programs and sampling semantics, and via different notions of likelihood (for Pearl and for Jeffrey). Moreover, it is shown that Jeffrey's update rule arises via variational inference. In terms of categorical probability theory, this amounts to an analysis of the situation in terms of the behaviour of the multiset functor, extended to the Kleisli category of the distribution monad.

Citations (2)

Summary

We haven't generated a summary for this paper yet.